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ON THE TRANSITION TEMPERATURE
OF A ONE-DIMENSIONAL METALLIC STRUCTURE

JANETKA, 1."), Bratislava

,—,.:w integral equations that enable to determine the mean-field temperature of
M.E.&Eo: to A.uan_.oa ﬂmﬁm. of a one-dimensional metallic structure are derived. The
~ :n:<_Ma omcmﬁwo:m are applicable to any one-dimensional metallic structure in which

¢ efiective electron-electron interaction can b i
f e expressed i i 1
e clfect p n terms of the dielectric

The equations for the temperature of transition to the states with spin-densit
waves and charge-density-waves formally coincide with the well-known o@ :mao:m _m o
the temperature of transition to the superconducting state. The _83%,4, of th o
equations depend on the spectral density of the inverse dielectric function. O: nMn
basis of the derived equations the relation of the coupling constants of 90. 1 tron
gas model to the effective electron-electron interaction is established Festron

L. INTRODUCTION

Bmw,_wmm%Mwwco:.mmavommga is a very important parameter of solids that
ransition to a new state. The im ini
t 3 portance of obtaining th
value of the transition tem i 1 eulation s
perature on the basis of microsconi ion i
undeniable, especially for desi i i iy
1 gnating the properties of one-dj i
metallic structures Dependin i i e cloctron o)
: . g on the sign and the size of the e]
Interaction these structures exhibit iti A
the transitions to states showj i
les ! 5 owing singlet

MMMM.HMo:QcQZ%VM EM_Q Superconductivity, charge-density-waves mma mwm

1ty-waves. Though the interaction betwe is dy |

. en the electrons is d i
depends on their motion, the exist; s St
» the existing methods of treating 1D 1li
replace the dynamic interaction b i tent of thie oopes e
Y a static one. The intent of thi i

: . . of this paper is to
od::%mﬁm the dynamical approach to the description of the ordered msﬂww in1D
metallic structures and to obtain the equatio ‘
that respect the concrete form of the effecti
these structures.

The mathematical descripti i
~Th ; ption of a 1D metallic structure usu 11 1 i
the discussion on the electron gas Hamiltonian [1—4) by beeins with
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q9. 8
q

where ¢} (q)(c,(q)) creates (destroys) an electron with spin projection « in the
1D state of the wave vector g and the energy &(q) = #2q%/2m — u, #iis the Planck
constant, m is the effective electron mass, u ~ #2k2/(2m) is the chemical poten-
tial, k is the Fermi wave vector, L is the length of the structure, and v(qg) is the
electron-electron interaction which depends on the transferred wave vector gq.

As a 1D system is characterized by a Fermi surface consisting of two points

q = + kg, there exist low-energy particle-hole excitations only in the neighbour-
hood of ¢ ~ 0 and g ~ 2k.. This means that, in general, only the electron-elec-
tron interaction processes involving wave vector transfers in the neighbourhood
of these two values play an important role. Moreover, in the simplest case one
restricts oneself to the interaction processes between electrons lying near the
opposite sides of the Fermi surface and neglects the interaction processes
between electrons on the same side of the Fermi surface. Then, one considers
only the following two kinds of the electron-electron interaction processes: the
interactions between electrons on the opposite side of the Fermi surface with the
g ~ 0 transfers and those with the g ~ 2k, transfers. The size of the former
interactions is usually parametrized by the coupling constant g, and that of the
latter ones by g;. The study of the ordered states in the model with the coupling
constants g, and g, is referred to as “g-ology™ [4, 5].

There are four possible types of the ordered states in this model. Particle-
-particle pairing leads to a singlet superconducting (SS) state or to a triplet
superconducting (TS) state depending on the relative spin orientation of the two
particles. On the other hand, particle-hole pairing can lead to a spin-density-
-wave (SDW) state or to a charge-density-wave (CDW) state, likewise depend-
ing on the relative spin orientation of the particle and the hole. The mean-field
theory yields the following expression for the transition temperature

T. = 2 exp(1/4), )
7k g

where Iny=C =0.577... is the Euler constant, kj is the Boltzmann constant,
and A, is a different combination of g, and g, for each of the different ordered

states:
Ass = (g1 + &2) N¢/2 (2.a)
Ars = (82 — &) N/2 (2.b)
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Asow = —g,N,/2 (2.0)
Aeow = (28, — g,) Ne/2, (2.d)

where Ny = m/(nfi’k;) is the density of states. Evidently, as to which of the
ordered states results, depends on the relative values of g, and 8 asitis always
favoured that ordered state whose transition temperature is higher than all the
others. Hence, the determination of & and g,, i.e., their relations to the effective
electron-electron interaction is of crucial importance.

The effective electron-electron interaction v(q, w) is, however, a complex
function not only of the momentum transfer fig but also the energy transfer fw:

v(q)
&(q, o)

GAQu ev =

where &(q, ) is the dielectric function. The inverse dielectric function 1/&(qg, w)
satisfies the causality principle. Therefore, it can be written in the spectral
representation of the Kramers-Kronig type which for an imaginary frequency
i@ states [6, 7]

1
&g, iw)

20 S|
Im .
QD+ o’ e, Q)

=1 +% dQ 3)
0

As the interaction between the electrons is dynamic, the method of treating
it has to be a little more subtle than that used for treating the static interaction
parametrized by the coupling constants & and g,. In this paper the method
developed by Kirzhnits, Maximov and Khomskii [7, 8] for the
description of the superconducting state in a three-dimensional system will be
applied to a 1D electron gas interacting via an interaction of the general type,
which corresponds to arbitrary spatial and frequency dispersion of the dielectric
function in the 1D metallic structure. The treatment presented in this paper is
divided into two parts, which deal separately with particle-particle and particle-
-hole pairings. The stress is particularly laid upon the factorization method
which depends on the type of pairing. In the third part the relation of the present
method to “‘g-ology” is briefly outlined.

II. EQUATIONS FOR THE TRANSITION TEMPERATURE
IL 1 Particle-particle pairing

The starting point of the present treatment is the equation of motion for the
ID field operator Wiz, 1) [7, 9—11]
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) ; ,1)=0, (4
X ~—. dz, %, de,V(z) — z5, [ — 13) .\WAN,: 13) (23, JL Vo215 1))

— — o0

i i ing the
here V(z, t) is the Fourier transform of the interaction v(g, ). Introducing
where V(z, :
single-particle Green’s function
WG (2 — 23, [ — ) = LTy (zi, 1) W5 (22, 1))

d
i e {...) refers to the groun

i ime-ordering operator, and ﬁ.rn average efe groun
érw - NMM MW@QMH”\M: the help of the equation (4) that it satisties the following
state, o

equation

$W+!||:+tvmgﬁ_ INN,:ISH
o, 2m 0z}

%ﬁo dz, % dt,V(z) — z3, t; — ) ¥

- -

= 8,58(z, — 2,) 6(t, — 1) + AI Wv Y

o ’ © . s
x LTy, (23, L) ylzs, 1) Wolzi, 1) W5 (22, 1)) ©)

i i Dirac
where 9, is the xﬁOSOOWOH delta w%a—uo— Om. the indexes a and mg %ANV is the Dir
aff

nction of the argument z. . N e averase
a&%:ﬂﬁ the condition of particle-particle pairing one can factorize t g

of four field operators in the Gorkov way [9-—11]
AN.._\\MTAN“: Nuv SwANuv Nuv _\\QANT N_v .\\M‘ANT NNVV =
= —ifif,(z, — 23, t, — Pvm\iﬂm (23— 2, 5 — 1),

where the anomalous Green’s functions are defined by
m\wmﬂﬂﬁNg — Z3, L — Nuv = AN..{\QAN: Dv _\\ﬂANuu vav
ihF (23 — 23, 13— t,) = {Ty,; (23, t5) Wi (22, L))
b7 2

i iple i dence on
A particle-particle pair can be in the singlet or Sv._ﬁ states EHMMHVMM: oo
the nom_.ﬁ?a spin orientation of the particles. In the singlet state p

dence ‘of Green’s function is as follows [8, 11]
Gz, 1) = 8,5G(z, 1)
F(z, 1) = 0,4F(z, 1)
a2, 1) = — 0l (2, 1),
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where

In the triplet state it is
Gz, 1) 0,5G (2, 1)
NﬂamANu D .WhuN... ANv ~v
NAMMANu nv = %ahNu+ANu Nv

In both cases, the €quation (5) takes the form

It

I

at,  2m oz} a2 tv G =2,y — 1) = 8(z, — 2,) 5(¢, — 1) —

—if dz da, b —Z - F(z, — 4 - . - -
.‘.l u,‘AI £ AN_ 3 4 Nuv A 1 35 1 Nuv +ANu Z3 Nv
s £3 2

and its Fourier transform is

o, — &(q,)) g(q,, @) =

=1 :sﬁs@ do,
o 27 )0 2n v(g, — ¢,, D~ @) f(g,, S~v.\+@? ), (6)

where g(g, ) f(g, @), and VA
3 bl 3 AQu
F(z, ) and F *(z, 1), respectively.

Proceeding alon
g the same lines one can d
erive t
€quation for the anomalous Green’s function BN oot of the

@) are the Fourier tranforms of G(z, 1

(o, + m@_:\%@: @) =

IS." a@..‘
o 21 )0 20 2 09 0= 0) @ g ).

Retaining only the linear ' term in t

he intera :
approximation) one casily gets fram ction (the lowest weak-coupling

the equations (6) and (7)
Aol — .\ub@_z\%@_. @) =

_ l_m% QQN,“
nn ) 2V~ 40— ) [ gy )

The temperature representation fr
temperature T, is
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om of the previous equation at the transition

o

T R i 50

\.+AQT —S:v =
- e 5" Yy — g 0 —i0,) (a0, ©)
S +NNAQ_ me—w Jow 27T

where @, = (2n + 1) 7k, 7./A, and n is an integer.
The introduction of the spectral representation ¢(gq, £2)

o) = [ 0209

enables to perform the frequency sum is the equation (8) explicitly [7, 8].
Introducing a new unknown function

D(g) = §|b€$ Q) — o(g, — &9

0

and making tedious arrangements [7, 8], one arrives at an equation of the BCS
type

__ ® nEN 2k,T, _ 2T, g 9.
o(q)) r % 2 Koy ). 9%a) ©.2)
with

K(q, &Nv =

g. ©9.b)

I
2+ @)+ 1E@) | 7o 41— 42)

The integral equation (9.a) with the kernel (9.b) is the 1D form of the equation

~ g - g 1+2] " ane

obtained by Kirzhnits, Maximov and Khomskii [7, 8], who showed

that ®(q) corresponds to the gap function. .
For the SS state the function @(q) is even and the equations (9) can be written

as

Ds5(q1) = |%s as ~ 2l
S o 27 2&(q,)

< Kss(q1, 42) Pss(q2) (10.2)

with
Kss(91, ¢2) =
293



nislﬁ%_+w%a dne ! Im _ g+
o AQ+ &g + 18(g)l 7e(€, g, — g,)
+v(g +3T+N%ﬂ&5 L I ! g
tr o 2 + |&(g)l + 1¢(g)l Eamb, a+q)d (10.0)
On the other hand, for the TS state the function @(g) is odd
@rsla: Nl.ﬁ QS 2k, T,
rs(41) 0 27 28q,) Kis(qy, ¢,) Drs(q,) (1l.a)
Kis(q,, q) =
ncs_nsvTi% dg— L !
0 A+ [E(g)l + 1E(g)] aﬂb, q — SL -
|§.+@T+¢ ho— L I
o R+ IE) + E@) T A g QL - (Lb)

The temperatures of transit;
: :o: to the SS i
the eqauib 10) 2nd (L. cespecttun and TS states are the eigenvalues of

IL. 2 Particle-hole pairing

S m
m ]
M: Hrnm casea N:— H:G MHm.m :: _Uo=~ﬁ ~ ﬂ:@ Qﬂcm:o: OM =~OH—0= —O~ Hrﬂ ~U :ﬂ—a

.@ ~m® ~
S.ll,!
l.+§ :
ﬁ at, Nsﬁ oz, v+t

— d
MR. Nu.‘, dr, YAN_ = Zn L= L)yt (2, ) ¥z, Nuv“_ e Wz, 1) =

T . :
hen, the equation for the single-particle Green’s function defined by

men G s - _ —ikpz =
s(zi — 25, 1, 5,) =T e "Fi vz, 1) v (2, 1) n;.w.uv

.@ _m@ N
3[11' III
ﬁ A_ o, +mkv +\@Q§ﬁ_ — It — 1) =
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et A S\ 5

= 8,0z, — 23) 8, — 1) +A va %q dz, % diV(z) — z3, 1, — t3) X
]

- —

x (T €yt (2, 1) Wiz, 1) Walzi 1) W5 (22, 1) €70 (12)

Under the condition of particle-hole pairing the following factorization of the
Hartree-Fock type leads to the proper description of the transition

(T e Py (25, 1) W23, 1) Vulzrs 1) V5 (22, 1) €72 =
= ihF, (2, — 23, t, — 1) iF (23 — 2, 15 — ) —
— i#F, (0, —0) ihF(z, — 25, 1, — L) Jittes =)
where anomalous Green’s functions are given by
(21 — 21 1 — 1) = T ey a1, ) 05 (2 1) €7
iFp(z; — 25, 13 — 1) =T et ‘Wiz, L)W (2, 1) ey,

However, particle-hole pairs consist of particles and holes lying near the
opposite side of the Fermi surface. Hence, the Fourier transforms of anomalous
Green’s ?:o:o:m are supposed-to be non-zero only for the wave <mo~0nm q from

the interval —k/2 < g < kg/2.
Again, there exist two possible relative spin orientations of a particle and a

hole. In the SDW state (the triplet state of the particle-hole-pair)-thespin- —————
dependence of Green’s function is

Gz, 1) = 6,4G(z, 1)
Fqz, 1) = o,4F(z, )
(2, 1) = —0,F t(z, 1)
and in the CDW state (the singlet state of the particle-hole pair) it is
Gz, 1) = 6,4G(z, 1)
Foy(z, 1) = 6,5F(z, 1)
Fi(z, 1) = 8,5F " (2, 1).
Then, the equation (12) takes the form

@ _m@ ~
Slll'lllj_'mwm+tQAN‘IN?N_INNVH%AN_INL%Q_Iaij
o, 2m\1i 0z,

+ ih h. amw% A V(z, =z, 8, — ) F(zy — 24, , — 63) FH{(zy— 2, 1, — 13) —

—o —w
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- Nsm% %% d,V(z) — 23, 1, — 1) F(0, —0) x

ik g —
X F*(z, — z,, N_INNv@_lu N_Vv

where @ is equal to zero for the SDW state and 1 for the CDW state. The
Fourier transform of the previous equation is

(o, — &g, + kplglq,, @) =

»w\u 8

. a a

uIs % L g — gy 0y — ) —
kg2 2 Jw 27

— 2002k, 0) €] f(q,, @) f*(q,, @), (13)

where g(q, @), f(g, w) and f "(g, @) are the Fourier transforms of G(z, 1),
F(z, 1) and F*(z, 1), respectively.
In a similar way, one finds

[hw, — m@_ - \D&\}T@_v W) =

i H dg, (* do,
k2 27 J_ 27
—200(2k;, 0) "] f* (g5, @) (41, @), (14)

The two equations (13) and (14) yield the equation for f*(g, ®), which can be
written into the temperature representation form

kyT, N
(A, — &g, + kD, — g, — k,)]

[v(g) — g, o — @) —

.\.+AQT ~e=v =

x kg/2
d ) ] )
x ¥ 2 (o(g, — 45, i@, — i@,) — 200(2k,, 0)] f*(q, i@,).

m= —ox I.»m.\w 2r
To simplify the treatment of 1D systems, one usually linearizes the electronic
spectrum [3] ,
Sg+k)>nlg)  Eg—kp) = —n(g),

where n(q) = Ai’k.q/m. This is a quite reasonable approximation in the finite
region of the width k, around the point g = 0.

Then, the basic equation for the determination of the transition temperature
is of the same form as the equation (8)

kgT,
ol + n%(q))

/g ie,) = x
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o kpl2
d . . .
x Y Lo, — g3, 0, — i0,) — 2002k, 0)] /* (g, i),

M=o J —kpf2 NNN.

Therefore, one can simply state that the temperature of transition to the SDW
state is to determined as the eigenvalue of the following equation

ko2 HT QAQNV
" dg, 2k,T.

Dspw(q) = % =k 2 Ksow(q:, g2) Dspw(gn) (15.a)
—kp2 21 21(q,)

where

Kipw(q,, ¢) = v(q; — q;) x
% T + N% dhQ : ! g (15.b)

Im
A+ (@)l + In(g)l  7e(R2, g, — q,)
and to the CDW state of the equation

s 2.— :AQNV
F dg, kpT,

Depw(q,) = - Keow(qy, ¢5) Depwlgy) (16.2)
—ke2 27 211(q,)

Keow(qr, Sv. =v(g, — q,) X

x T +2 % 40 1 T 1 Q —
0 AQ+ (@)l + In(g)l e, ¢, — ¢,)
- N%@T 3] By, 1 g
v Q 7e(e, 2%,)

The term v(2k,, 0) = 0(2k)/€(2k, 0) has been written using the equation (3).

(16.b)

IL. 3 The relation to “g-ology”

To get approximate expressions for the coupling constants g, and g, in terms
of the dielectric function, one first takes into account that the integrals in the
equations (10.a) and (11.a) are dominated by the contribution of the integrand
at g, = k. Because of this, in a finite region around this point one can make
substitutions

@mm@v = Dgs(ky) Drs(q) - Drglky)
Kss(qy, q5) = lim Kk, kp + 9) =g +g

q-0
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K+s(q1, 9,) = lim Kys(kp, kp+q) = & — &

g0
where
g = _:_w 23@ +2 % dh0 ) Im — | ;
e 0 hQ+in(gl  ne(Q, q)
81 = v(2kg, 0). a7

.;w c.:a:. of the finite region in which such substitutions are supposed to be
,Am__a 1s again chosen as k.. Because of the incomplete screening of the interac-
tion v(g), there can be a singularity in &, calculated as the limit of the expression
(17). In such a case, the original singular value of g, must be replaced by the
mean value of this expression calculated over the interval —ki2 € q < k2.
The equations (10.a) and (11.a) then reduce to the following equations

I = —(g+g)! ~HI.AN~|%_vh
where

A0

t
N”.—.w»ﬁ\wﬂlﬁ N\GENM‘( m :.—ANR:V
i 21 28q)  2ahk,  \mk,T.)’

which lead to the transition temperature (1) with Ass and A given in (2.a) and
(2.b), respectively.

m:n:m.lw. .Eo integrals in the equations (15.a) and (16.a) are dominated by
the contribution of the integrand at q; = 0. After substitutions

Dspw(q) — Dspw(0) Depwl(q) = Dcpw(0)
Ksow(q1> ¢,) = lim Ksow(0, 9) = g,

q-0

Keow(@y, ¢5) = lim Kepw(0, q) = g, — 2g,

g0
the equations (15.a) and (16.a) get the form
l=gJ 1=(g~2)J
where
ko2 z‘- N;Qv
.\H% dg N\QHR = _sﬁwu\t
—ke2 21 27(q) 2k, \k,T,

m_.<.m:m again the transition temperature (1) with Agpy and Acpy, of the same form
asin (2.c) and (2.d), respectively. The resolution of the integral equations (10),
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(11), (15), (16) with the kernel of the general form is a complicated mathematical
problem well-known from the theory of superconductivity. Solving the integral
equation of this type, one usually approximates the kernel with a constant that
is nonzero only in the region of a finite width. This method of solving was
presented in this subsection. The procedures that lead to the solutions of these
integral equations with the kernel of the other form can be found in [7, 12, 13].

{I1. DISCUSSION

A strictly 1D electron system cannot undergo phase transition at any finite
temperature {14, 15] as thermal and quantum fluctuations prevent the develop-
ment of a long-range order [I—5, 15—19]. However, real materials which
consist of a collection of weakly coupled 1D structures exhibit phase transition.
The theoretical explanation of the properties of such materials has usually its
origin in the mean-field description of single 1D structures, i.e., in the
description that does not take into account the effects of fluctuations. It is due
to the fact that the coupling among 1D structures partially suppresses the effects
of fluctuations, e.g., a small degree of the coupling is sufficient to bring the
actual transition temperature close to its mean-field value [4, 5, 20, 21].

An example of such a mean-field treatment of a single 1D metallic structure
was presented in the previous section. On the basis of the derived equations one
can determine the ordered state whose transition temperature is higher than all
the others and whose tendency to develop in the corresponding real material is,
therefore, prevalent. Particle-particle pairing and particie-hole pairing were,
however, treated separately without taking into account their competition:
Because of this insufficient treatment the calculated transition temperature can
be regarded as a reliable mean-field value only if one type of pairing is highly
dominant over the other, since only in this case the use of a single-channel
calculation rather than a coupled two-channel approach is fully justified.

There is another subtle point of the present treatment which deserves to be
mentioned, namely, vertex corrections to the electron-electron vertex. However,
the vertex corrections can be neglected in the system in which the weak-coupling
approximation is valid [4, 7, 8]. In any case, the problem to treat the vertex
corrections properly can be related to the calculation of the effective electron-
-electron interaction.

On the other hand, the derived equations are suitable for the determination
of the transition temperature of a wide class of 1D metallic structures including
those in which electrons interact via the interaction with space and time disper-
sion, damping, etc. Perhaps the simplest metallic structure of this class is the 1D
electron system in which the bare electron-electron Coulomb interaction v(gq) is
screened by the dielectric function of the following form [22]
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m.AQ. ev =1~ CAQV \vAQq evv

.Sroa (g, w) is the 1D Lindhard function. The bare electron-electron Coulomb
tnteraction v(g) has the logarithmic singularity as g — 0 expressing the long-
-range nature of the Coulomb repulsion. The proper long-wavelength and high-
-frequency behaviour (plasmons) of the electrons is, however, described by the
screened electron-electron interaction

v(q) .
1 — () A(g, w)

Clearly, the question which of the possible ordered states is favoured in this 1D
electron system can be answered with the help of the derived equations. This
matter is very interesting, particularly for high-temperature superconductivity,
as there are opinions [23, 24] that the plasmon mechanism of superconductivity
could be responsible for the high critical temperatures in the layered perovskites,

So far the plasmon mechanism of superconductivity has been studied only in
two-and three-dimensional systems [23—26]. The problem whether plasmons
can mediate such a strong attractive electron-electron interaction leading to
superconductivity also in the 1D electron system will be treated in a forthcoming
paper.

v(g, w) =
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O TEMUOEPATYPE IIEPEXOJA Obw—OZMWIOS METAJIMYECKON CTPYKTYPbI

TToay4enn: uHTErpanbHbIC yDABHEHNHS, KOTOPIC B IPUGIMXEHUH CPEIIHETO NOMA NO3BOJIAIOT
ONPCACTUTE TEMIIEPATYDY I€PEX0Aa K YNOPAXOYEHHOMY COCTASIHUIO OHOMEPHOM METALAHYECK Ot
CTpYKTyphl. TlomyueHpic ypaBHeHHs MOTyT GbITh NpPHMEHEHBI X OJHOMEPHOH MeTamTMyeckoi
CTPYKTYPpE, B KOTOPOil 3(eKTHBHOE 3NeKTPOH-3IEKTPOHHOE B3aHMO/IEHCTBIE MOKET GbiTh BbIpa-
XKEHO B TEPMMHAX AUIICKTPHUCCKON QyHKUMH.

YpaBHeHUA [UIA TEMIEpaTyphl NEPeXOAd K COCTASHHMAM € BOJHAMH CIMHOBOM ILIOTHOCTH

U BOJTHAMH 33pA/I0BOH NIOTHOCTH YOPMAITHO COBNALAIOT C XOPOLLO HIBECTHBIMH YPABHEHHS IS
TCMIIEPATYPBL NIEPEXOAA K CBEPXMPOBOMALICMY COCTAasHMIO. SIApa 3TMX YPABHEHHi 32BHCAT OT
CTIEKTPAILHON NIOTHOCTH 0bpatHol AudexTpHycckoil Gynkuun. Ha ocHoBe mosydenbix ypasHe-
HUH YCTaHOBNICHA CBA3 KOHCTAHT CBA3M MOJENN INEKTPOHHOTO Ta3a H HPPeKTHBHOTO MEKTPOH-
-3NICKTPOHHOIO B3aUMOAEHCTBHS.
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