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MULTI SPIN-FLIP DYNAMICS:
A SOLUTION OF THE ONE-DIMENSIONAL
ISING MODEL

NOVAK, I.," Bratislava

The Glauber dynamics of interacting Ising spins (the single spin-flip dynamics) is
generalized to the p spin-flip dynamics with a simultaneous flip of up to p spins in a

is given exactly in this case. We have found one can evade a critical slowing down in
this model when P spin-flip dynamics with P > 2 is considered.

L INTRODUCTION

tion results. To overcome this drawback of the Monte Carlo method, various
simulation techniques accelerating relaxation to the equilibrium were prosed [4
—6].

An accelerated relaxation to the equilibrium is important in Monte Carlo
computations of lattice gauge theories [7, 8]. Euclidean quantum field theory of
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the lattice with dynamical fermions yields a system with many degrees of
freedom and with nonlocal interaction. An accurate measurement of the ther-
mal equilibrium averages in Monte Carlo simulations of these systems is practic-

———ally not to be attained, with today’s computers (basically because of the long

relaxation times), even though there are already several powerful multiprocessor
systems operating to solve this task [9]. Considerabie effort has been devoted to
the development of the accelerated Monte Carlo techniques in lattice gauge
theory computations [10—14].

In this paper we investigate an accelerated dynamics of the Ising model. An
analytic solution of the proposed p spin-flip dynamics is given for the one-dimen-
sional Ising model with uniform nearest-neighbour interaction and periodic
boundary conditions. :

The paper is organized as follows. In the next section the standard single
spin-flip dynamics (the Glauber dynamics [15]) is generalized to the dynamics
with simultaneous flip of not more than P spins in one configuration move (the
P spin-flip dynamic). The master equation for the p spin-flip dynamics is pos-
tulated. In Sect. 3 equations of motion for time-dependent local magnetizations
in the one-dimensional Ising model are derived — the solution of these equa-
tions and temperature behaviour of the largest relaxation time are given.

2. FORMULATION OF THE p SPIN-FLIP DYNAMICS

In this section we formulate the P spin-flip dynamics for systems with the Ising
spin degrees of freedom. Hereafter {s} is used to describe the configuration of
the system {s} = (s,, 83, -5 Sy), ;= +1, and H'({s}) is its Hamiltonian. The
time development is given as a stochastic process described by the master
equation for the probability P({s}, 1) that the system is in the configuration {s}
at time ¢

dP({s}, 1)
dr

= 2 WA= {sPP(sy, 0 — Wst—{shPds, (1)
{7} #{s}

W({s} — {s°}) is the transition probability per unit time for the move from the

configuration {s} to the configuration {s'}. .

For the purpose of elementary transition generation we shall use operators
R7 on the spaces of all configurations {s}, with 7 being an index labelling spin
sites and 5 an arbitrary p-component binary vector 5 = (7, M --vs 1,), With
N, = * 1. Thus there is 2’N of such operators and they act in the following way

%_.a;&. tmma&, = (8, 83y «on\ 5y MSiv1s MSiyas -ony MoSieps Sivpsis s S) (2)
For i > N — p this prescription has to be defined according to the con:amQ
conditions. We shall use periodic boundary conditions, thus for ; 4 g > N one
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has to replace the MySis g by the 1,5, where j = mod (i + g, N). From the
definition (2) we have (R" = 1, thus when {R1s} = {s'}, then the inverse
relation is {R/s’} = {s}. We refer to a set of all couples (i, ) for which
{R7s) = {s'} as to a set of p-lransition modes between {s} and {s’}, which is a
subset of the set of all p-transition modes with 2’ N elements.

We postulate the P spin-flip dynamics as the stochastic process governed by
the master eq. (1) with the transition probability W ({s} - {s'}) given in the
following way

® for each p-transition mode of the transition {s} — {s’} the p-transition mode
Iransition probability per unit time (or shortly p-transition mode probabil-
ity is given as

E\az.wvv =q €xXp A - .%%QNMEMUV
2. exp (— B ({Rs))

{m,

i=1,2,..,N, 3)

where f is the inverse temperature, f= 1/T.

® the total transition probability W({s} - {s '}) of the p spin-flip dynamics
is the sum of the p-iransition mode probabilities over the set of p-transition
modes between {s} and {s}. :

From this definition it follows that the transition matrix W' O{s} - {s 1) for the
P spin-flip dynamics has a nonzero transition probability between configurations
which differ in not more than p spins, and the maximum distance between sites
with flipped spins is less than p- The p-transition mode probability is a straight-
forward modification of heat bath algorithm transition probabilities for the
single spin-flip Monte Carlo simulations. The average number of all transitions
per time unit is

2, Y Wri(sh) =a.N @

{nlp i=1
We put @ = 1 and choose the time unit proportional to the size of the system.
The total transition probability per unit time for the transition {s} > {s’} can
be writen as a sum over all p-transition modes in the following way

2 0L AR sHWA((s)) Q)

i=1

WO ({s}{s}) = *Mv

with 8({s}, {s'}) = m Oy

i=1

It can be directly seen that p spin-flip dynamics is an ergodic process and the
condition of the detailed balance is satisfied

283




PasHW s} = {sD) = P, (s DW (s} - {5)), (6)

F,,({s}) is the thermal equilibrium distribution: P,(s}h ~ exp(— BH#({s})). Thus
according to the theory of Markov processes the thermal equilibrium distriby-

~tion is the equilibrium distribution of
The master equation (1) for the

sition mode probabilities (3) becomes

dr({s}, 1)
de

=2 X WsHP(s), 1)

o, i=1

AW =A{shy, =Y A{sHP (s}, 1) is

{s}

5 "2 X Y IA({Rs) - 4

55 {m), i=1

the p spin-flip dynamics.
P spin-flip dynamics written in terms of p-tran-

~ WGRsHP(R s}, 1). )

AsHW.(sHP (s}, 1). ®)

3. MULTI SPIN-FLIp DYNAMICS OF THE ONE-DIMENSIONAL
ISING MODEL

In this section we dea
-neighbour interaction a

tonian of this model is

For p =1 the P spin-flip dynamics of thj

H({s}) — WU &.3,&4 1>

i=1

spin-flip dynamics (the Glauber model), the
known [15—] 7]. Here we solve the P spin-flip dynamics in the case of the uniform

ferromagnetic interaction J, = J > 0. One obtains from (9) for the p-transition
mode probabilites 3)

P
@6AM.§\§§+ _.w..+1ﬁ.+\+_v
Wils)) = ,uo/u I=1,2,..,N (l0)

)

2:08$H$+~H_

site indices have to be implicitly inter

dary conditions, i.e.

»

I with the one-dimensional Ising model with nearest-
nd with periodic boundary conditions. The Hamil-

Sy =38 va

§ model becomes the usua] single

exact solution of which is well

?
M QGAMO EQ~5+.@..+1&.+x+_v

-In (10) and also throughout the rest of this section, all spin

if i # N, then i — mod @,

preted with respect to the periodic boun-

N).

netization as m, (1) = 80 = Xy 5. P({s}, 1) and using the p-transition mode
operator R" definition (2) written for the individual spins
Rs, = St s 2 (g, — 1) &.I;m one ovﬁmim ?o:._ (7) the following ex-
pression for the local magnetization equation of motion

e DD TR R k=12, N.
5} tnl, i=1 =1
an

We utilize the relation (10) for W({s}) in (11) rewritten with help of identity
€™ = coth x + s sinh X, § = + 1. One finds the expression multilinear in the 7’s
P

_ Y | 5 .
W.({s} “A NAM\ M.W\MMV:V : I+ Y e e St vSigry) i=1,2..,N,
—_ v\ r=0
(12)

where y = than (8J). Thus the sum over all possible 7’s in (1 1) can be aesily
done and one recovers a closed set of equations for the local time-dependent
magnetizations m, (¢)

a]SM»B = —pm (1) + E_SQ\:»VMQV +m (1) + .R%K:#{mﬁv Ty, (1) (13a)
!

where

7'(1 — u\#lm;kv
.:%VH,%“ 9=1,p and y=tanh BN. (13b)
In the case of p = | Jjust a single term appears in (13a), 4" = y/(1 + ¥y =

-1 tanh (247), i.e. (13.a) gives egs. of the Glauber model [15].

2

The solution of the set of the homogeneous linear equations m(t) = I m(r)
is given through the eigenvectors v™ and eigenvalues A, of the matrix
I''m@t)=m) = Z,c, v exp (4,), with ¢, given by the initial conditions. In
(13a) I'¥ is g symmetric band matrix with the bandwidth 2p + 1

= —ps, + Y t%va»ls_ + Sirg1) k,1=1,2, .., N (14)

9=.p

The eigenvectors and eigenvalues of the I'® are

.2n
v = exp A_ l\/ﬂx\v. . (15a)

.Na
\.ﬁEH lﬁ._.w M t%;oomAII:Qvu n=0,1,..., N—1. (15b)
g=1p N
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As before, @am = 1 only one of the two lerms appearing in the sum should be
taken. All eigenvalues A" are nonpositive, and AN >A9, for n=1. 2
\<|. ~ n o 3 Ly aaey

&\n take the site averaged magnetization defined as m(t) = B | m,(1). For
a given local magetization m,(0) at a time 1 = 0 we get the final solution for
time-dependent magnetization

1 2
mo)=—73y Yy Ms\av@%m_%i»fcv@%A:Fvv (16)

NS 2 (r
n=0 7,

«J&ma W= - g = 0,1, ..., N—1is the found spectrum of relaxation
.:58 of the p spin-flip dynamics. For homogeneous initial conditions m, (0) = i
Just one mode from (15) contributes and we have m(t) = exp (— /7))
Because 7§ is the largest relaxation time of the spectrum, the :oEomnsmwcm.
mode has the slowest relaxation to equilibrium.

For p =1 one recovers the well-known result of Glauber:

%) = (1 =251 + )~ = (1 — tanh 287",

[15]. For f to inf the largest relaxation time 7" diverges as ~ L exp (4587).
2
.13 P > 1 the largest relaxation time of the one-dimensional Ising model p
spin-flip dynamics is

ﬂi” INA lv\\:lvxuvv |_
e e (19)

For f to inf and p = 2 the 7 diverges exponentially with the inverse tem-
1
2 . .
perature 73 ~ = exp (447) but for p > 2 it remains finite &~ ! , L.e. there

8
- .. . ﬁ - N
18 no critical slowing down at critical temperature.
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ANHAMMKA MHOXECTBEHHBIX W3MEHEHMI OPUEHTALINI CIIMHA:
PEIEHUE OJHOPABMEPHOM HM3UHIOBCKON MOJAEIH

B npennaraemoit paGore rnay6eposckas nunmamuka B3aUMOJEHCTBYIOILMX H3MHTOBCKHX CITH-
HOB (MHAMUKA ONHHHOYHBIX HIMCHEHHMI OpMeHTauuii cuHa) 06o6macTes Ha CHY4AR AHHAMUKH
MSMEHCHUS OPHEHTALHH p CTHHOB. KI3y4aeTcs HMCHEHHE OPHEHTALIMH p CHIUHOB B OHOpa3MepHO#
M3UHIOBCKOH MOJETH C YHHDODMHEIM B3aUMOACHCTBHEM 06 TH)alIIHX coceneii. B aTom caywae
TIPHBOIUTCA TOYHOE BHIPAKEHHE /LTS MATHETH3AIMH, 3aBHCALLER OT Bpemeny. Buino HaiIeHo, 4TO
MOXHO H30eKaTh KPHTHYECKOTO 3aMEIEHHS B ITOH MOZJENH, eCIH BISTh B Y4ET JHHAMHUKY H3-
MEHEHUH OpHEHTALMH p > 2 CIHHOB.
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