THE MAGNETIC PHASE TRANSITION IN KDy(MoO4)

МАГНИТНЫЙ ФАЗОВЫЙ ПЕРЕХОД В $\mathsf{KDy}(\mathsf{MoO_4})_2$

ORENDÁČOVÁ, A.,2) FEHER, A.,2) STEFÁNYI, P.,2) Košice

The layered KDy(MoO₄)₂ shows an orthorombic crystallographic structure (space group D_{3h}^{4}) at room temperatures (a=1.82 nm, b=0.795 nm, c=0.507 nm). It undergoes a crystallographic second-order phase transition of the Jahn—Teller type to an antiferrodistortive phase below 14 K. Above this temperature the Dy^{3+} ions have a low-lying doublet 35.7 × 10^{-23} J above the ground doublet state. When the substance is cooled through the transition temperature these doublets move transition in the complex magnetic ordered state was found at 1.1 K by magnetic susceptibility measurements [1]. The heat capacity measurements were performed in [1] from 3 K but their precise analysis was not made due to a large Schottky contribution and lattice contribution.

In this paper the results of the heat capacity measurements in the temperature range from $0.5 \, \mathrm{K}$ to $6 \, \mathrm{K}$ are presented. The single crystal sample (mass 1.2 g) was prepared by the flux method. The heat capacity was measured by means of the usual heat pulse method [2]. The heat capacity of the measured sample from $0.5 \, \mathrm{K}$ to $6 \, \mathrm{K}$ is shown in Fig. 1. The lambda type peak at $(1.000 \pm 0.005) \, \mathrm{K}$ corresponds to the magnetic phase transition. The obtained value for T_c differs from $T_c = 1.1 \, \mathrm{K}$ mentioned in [1]. The total heat capacity C_T may be written as a sum of the lattice contribution C_L , the heat capacity caused by the crystal field splitting (Schottky anomaly) C_{SH} and the magnetic contribution C_M

$$C_T = C_L + C_{SH} + C_M.$$

 C_{SH} was calculated for a two-level system with $\Delta E = 55.6 \times 10^{-23}$ J and was separated from the total heat capacity (dashed line in Fig. 1). Many of the models for the magnetic contribution have a T^{-2} dependence for the heat capacity in the high temperature limit and the lattice heat capacity follows the T^3 law in the low temperature limit. The rest of the heat capacity $(C_T - C_{SH})$ should obey the relationship

$$C_T - C_{SH} = sT^3 + bT^{-2}$$

in certain temperature range. To find this temperature range it is necessary to determine the linear interval on the $(C_T - C_{SH})T^2$ vs. T^5 plot. This region was found to extend from 2.14 K to 4.17 K. The parameters a, b were calculated by the least squares method as $a = (3.03 \pm 0.04)$ mJ/mol K⁴ $(\Theta_b = (137.4 \pm 0.5))$ K was evaluated from a) and $b = (3.03 \pm 0.04)$ mJ K/mol (Fig. 2). For describing the magnetic heat capacity below 2.14 K the suitable low-dimensional magnetic model should be used. The deviation from the linear dependence above 4.17 K is probably due to the

274

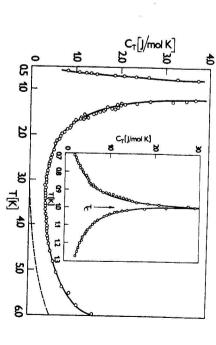


Fig. 1. Heat capacity of KDy(MoO₄)₂. The phase transition is indicated by an arow. The dashed line corresponds to a Schottky anomaly. The solid line is only a guide for eyes.

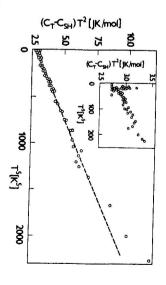


Fig. 2. Heat capacity data for KDy(MoO₄)₂, according to the relation (2). The insert shows a deviation from the linearity on the low temperature side.

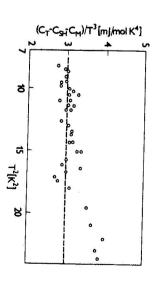


Fig. 3. Plot of the heat capacity data for $KDy(MoO_4)_2$ showing the deviation from the T^3 law on the high temperature side.

⁽⁾ Contribution presented at the 8th Conference on Magnetism, KOŠICE 29. 8.—2. 9. 1988.
2) Faculty of Sciences, P. J. Šafárik University, KOŠICE, Czecho-Slovak Federative Republic

contribution of further terms of the temperature expansion of C_L . The contribution of the T^5 term to the C_L may be seen also on the $(C_T - C_{SH} - C_H)/T^3$ vs. T^2 plot (Fig. 3).

In conclusion, the magnetic phase transition into the ordered magnetic state was observed with

 $\Theta_b = (137.4 \pm 0.5)$ K, considering four oscillating groups in KDy(MoO₄)₂. We are grateful to Prof. A. I. Zvyagin and Dr. E. E. Anders for providing us with the $b = (2712 \pm 20) \text{ mJ K/mol}$ and for the lattice part in the T^3 limit the coefficient $a = (3.03 \pm 0.04) \text{ mJ/mol K}^4$ were calculated. The value of the Debye temperature was found as $T_C = (1.000 \pm 0.005)$ K. For the magnetic part to the heat capacity in the T^{-2} limit the coefficient

 $KDy(MoO_4)_2$ sample.

REFERENCES

[1] Cooke, A. H. et al.: J. Phys. C9 (1976), L 573. [2] Skyba, P. et al.: Čs. čas. fyz. A38 (1988), 371.

Accepted for publication February 17th, 1989 Received November 1st, 1988