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THEORETICAL FUNDAMENTALS
OF QUANTITATIVE ACOUSTIC MICROSCOPY"

LEVIN, V. M..» MAYEV. R. G.» KOLOSOV. O. B. » SENJUSHKINA. T. A.»
BUKHNY, M. A_» Moscow

Consideration is given to the formation of a dependence of the output signal of
the acoustic microscope on the coordinate =, which determines the mutual disposition
of the acoustic lenses and the sample, in reflection and transmission modes of
operation (so-called ¥(z) — and 4(z) — dependences). The connection is analysed
between the characteristic parameters of the V{z)- and the A(-)-dependences and the
local values of the sound velocity in the sample for materials with a small shear
modulus. A skimming compression wave is shown to participate in the formation of
the V(z)-dependence. The results of this study provide a theoretical foundation for
quantitative acoustic microscopy; in particular, they make it possible to asses the
accuracy of the quantitative methods.

1. INTRODUCTION

Acoustic microscopy is based on the interaction of a converging acoustic
beam propagating in an immersion liquid with an object to be studied, also
submerged in the immersion liquid (Fig. 1). Recording the acoustic radiation
after its interction with the object, one can not only visualize the microstructure
of the sample but also obtain quantitative information on local physical proper-
ties of the sample in a given point [1-—3]. At present quantitative methods of
acoustic microscopy are being developed for plane samples whose acoustic
properties vary only little at distances of the order of ultrasonic wave length.
The methods of the acoustic microscopy are used to measure the values of sound
velocities, acoustic attenaution, and other physical magnitudes with a resolution
from dozens to decimal fractions of a micron, depending on the operation
frequency of the microscope, which usually ranges from 20—30 MHz to 3 GHz
[2, 4-17].

" Contribution presented at the 11th Conference of Ultrasonic Method in Zilina. Au-
gust 31—September 2, 1988

* Centre of Acoustic Microscopy. Institute of Chemical Physics, Academy of Sciences,
MOSCOW, USSR

171



When the acoustic microscope is used as a measuring instrument, the output
signal at the transducer of the receiving lens is recorded. The value of this signal
as such gives little information, and therefore the output signal is measured as
a function of the distance z, the only variable which can be easily changed in the
course of the experiment. In the reflection mode of operation the distance
between the acoustic lens and the object is changed (Fig. 1a); in the transmission
mode of operation the distance between the radiating lens and the receiving lens
is changed (Fig. 1b). From the dependence of the output signal on the distance
- one can determine the local viscoelastic characteristics of the sample. The
physical principles of formation of such dependences, as well as their form, are
different for different modes of the acoustic microscopy. To draw a distinction,
we shall further denote the output signal of the microscope in the reflection
mode as ¥ (z) and the output signal of the microscope in the transmission mode
as A(z).
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Fig. 1. Formation of an output signal of the acoustic microscope in its dependence on the coordina-

te-a) reflection mode of operation, b) - transmission mode of operation). Left: schemes of

formation of the output signal; right: typical dependences of the signal amplitude on the coordina-

te =. Dashed line shows the A(z; - - dependence in a lens system without the sample. L, and L, are

radiating and receiving lenses. = = 0 is the position of the focal plane of the radiatings lens, S is the
sample.
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Qualitatively the mechanism of formation of the ¥(z)- and 4 (z)-depences can
be understood by resorting to the simplest ray theory considerations. In the
reflection mode of operation all the specularly reflected rays come to the
receiving transducer in the same phase, when the reflecting surface is disposed
in-the focus of the lens. When the surface shifts from the focus, the rays
travelling in different directions come to the transducer in different phases. Due
to interference the output signal reduces, undergoing oscillations. For an ideal
reflector the V' (z)-dependence has a usual diffraction character [8]:

sin aw.u?
(V@) =A|—————|, A = const, (1)
. x

A

where z denotes the shift of the reflecting surfce from the focus of the lens. The
curve V(z) is symmetrical, its period Az depends on the sound velocity C in the
immersion liquid and on the numerical aperture of the lens x,, = sin* &,,:

AZ = Axy = C[f - X,

m

where A is the sonic wave length in immersion, fis the operation frequency of
the microscope. The character of reflection at the interface of real media is more
complicated. A part of the incident rays may excite waves propagating along the
the surface of the samplé and re-radiating back into the immersion liquid: a
skimming compression wave [9)], a leaky Rayleigh wave [10], leaky waveguide
modes [11]. If the reflecting surface shifts from the focus towards the lens (region
z > ), such waves participate in the formation of the output signal of the
microscope (Fig. 1a). In this case the | ¥ (z)] — dependence is asymmetrical. It
has been shown both experimentally and theoretically {8, 12—15] that for many
solid-state samples the formation of the V(z)-dependence is associated with
leaky Rayleigh waves. In this case the periodicity of the V' (z) — curves in the
region z > 0 is dependent on the local value of the Rayleigh wave velocity C,

Bnnm _+oom®x.
[ 2.sin®,

where @, = arcsin (C/Cp) — the so-called Rayleigh’s angle [13]. The V(z) —
curves are used for the determination of C and for so called V'(z) — charac-
terization (acoustic signature) of the samples [2, 4, 5, 12—15]. Today, however,
there are no clear theoretical ideas concerning the shape of the V(z)-curves with
different relationships between the acoustic properties of the sample and immer-
sion, concerning the connection between the parameters of the V(z)-curves and
the viscoelastic characteristics of the sample and immersion, concerning the
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degree of accuracy in acoustomicroscopic measurements. The role of other types
of waves, besides the leaky Rayleigh wave, in the formation of the V'(z)-depen-
dencies, in particuiar, the role of the skimming wave, remains unclear.

The studies of Atalar [8, 14] remain the only studies devoted to the
theoretical substantiation of quantitative methods of reflection acoustic micro-
scopy. Atalar’s studies demonstrate that the output signal of the microscope is
related in an integral manner with the sound reflection coefficient at the interface
of the sample and the immersion liquid; an analysis is also presented, how the
role of the leaky Rayleigh waves in the formation of the V(z)-dependence may
be taken into account. Atalar’s results are usually employed for numerical
calculations: the known acoustic parameters of the material are substituted into
the integral formula, the V(z)-dependences are calculated numerically, and the
results obtained are then compared with experimental curves [2, 4, 5,8, 12—15].
Such an approach, naturally, cannot give answers to the problems set foth
earlier; for solving these problems an analytical approach is required in com-
bination with purpose-oriented numerical calculations.

Quantitative investigations in the transmission mode of operation are based .

on different principles. We have proposed a method using the dependence of the
output signal 4 on the distance between the radiating lens and the receiving lens
[6, 7]. The method is based on shifting the focus of the converging beam due to
refraction during the passage of the beam through the plane sample (Fig. 1b).
In the absence of the sample the signal is maximum, when the foci of the lenses
coincide (confocal system). As the receiving lens shifts, the signal drops rapidly,
undergoing oscillations, due to interference effects. If an object shaped as a
plane-parallel plate is placed in the path of the focused beam, the rays falling at
the angle 0, after passing through the plate, will be collected at a point on the
acoustic axis, shifted with respect to the focus of the radiating lens for the
distance:

z=d.(1 —tan a/tan @), )

where d is the thickness of the plate; a is the angle of refraction, defined by the
condition sin @ = (C,/C)-sin @, C is the velocity of sound in immersion, C, is
the velocity of longitudinal sound in the sample. If the aperture of the lens O is
small, the tangents in (2) may be replaced by sinuses (paraxial approximation).
Then the displacement of the convergence points of the rays does not depend on
the angle of incidence: after the passage through the plate the beam remains
focused. There arise a new position of the focus and, accordingly, a new position
of the maximum on the curve |4 (z)|. The shift of the maximum:

Az =d.(1 — C,/C) 3)
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depends on the local value of sound velocity in the sample. By masuring the
shift, it is possible to obtain the value Cin a given point of the sample. A ormumo
in the absolute value of the | 4 (z)| maximum after the introducing of the sample
determines the local coefficient of transmission. This makes it possible to assess
the local absorption in the sample. The possibility of measuring sound velocities
and attenuation coefficients by such a method was confirmed experimentally on
polymer and biopolymer films, collagen fibers, and other object {7].

Paraxial approximation, however, is applicable only to the beams with a
small aperture (0, < 10°—15°). In acoustic microscopes, as a rule, wide-aper-
ture lenses are employed (8,, ~ 30°—60°). In such systems focused beams, when
passing through the sample, are subject to considerable aberrations. The focal
region of the beam widens strongly, and the application of the proposed method
requires a substantiation. The present paper is devoted to an analysis of the
theoretical fundamentals of the quantitative acoustic microscopy, at least for
definite classes of objects.

It is convenient to describe the formation of the output signal within the
framework of concepts of the spatial radiation spectrum [8]. The field of the
radiating lens is represented as a set of plane waves having the same frequency
@ but different directions of propagation. The amplitudes U(K) of waves with

different wave vectors k = M%: k., k. =
’ c

spectrum of focused radiation. As the radiation propagates in a homogeneous
medium over the distance z, the spectrum becomes transformed due to the
multiplication by the phase factor exp {ik.z}; upon reflection from the interface
it is multiplied by the reflection coefficient R(k,, k,); upon passage through the
plane-parallel sample it is multiplied by the transmission coefficient T'(k,, k,). As
a result, a set of plane waves with different k, and k, falls onto the receiving lens.
Fach such wave creates its own signal at the receiving transducer, this signal
being defined, apart from the amplitude and the incident wave phase values, by
the response characteristic of the receiving lens U,(k,, k,). The value U,(k,, k,)
is a signal created at the receiving transducer by the plane wave with the wave
vector {k,, k,, k.} having a unit amplitude and a zero phase in the focus of the
receiving lens.

In the reflection mode of operation the dependence of the output signal V" on
the shift z of the sample surface from the focus of the acoustic lens is expressed
in an integral manner [8] through the reflection coefficient Rk, k,):

~
o’ . .
- - ki— Fww constitute the spatial

Vi) = “ % " U ke, ) Us(her KRk, ) € dk, d, @)

The function P(kk,) = U, U, is an aperture function of the lens; its shape can
be found theoretically for an ideal lens [1] and experimentally for real lenses [16].
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In a theoretical analysis one can resort to the simplest approximation for P,
assuming that the focused beam is an ensemble of waves with the same am-
plitude and phase, propagating along directions lying within the angular aper-
ture of the lens. Similarly, the response function is dependent but little on the
angle within the angular aperture @,,. Under these assumptions the aperture
function is constant at the angles @ smaller than ©,, and is equal to zero beyond
the angular aperture of the lens (so-called pupil function) {1, 8]. For isotropic
samples and acoustic lenses with small apertures 6,, < 30°—40° equation (4) is
simplified:

X .

V(z) = A % R(x) " dx, 5)

0
where x = sin’ 0, x,,sin” @,, A is a constant. Under the same assumptions
concerning the isotropism of the sample and the shape of the aperture function
the dependence of the output signal of the microscope in the transmission mode
of operation on the distance z between the foci of acoustic lenses (Fig. 1b) is
expressed through the transmission coefficient T(0, d) (d being the sample
thickness) in the following manner:

G,

m

A@@) = w% (@, d) ¢ =2 ®sin ©dO, ©)

0
where B is a constant.

Proceeding from equations (5) and (6), we shall consider the formation of the
V(2)- and A(z)-dependences for an interesting class of materials: samples with
a small shear modulus G (biological tissues and cells, polymer and biopolymers
etc.). The assumption of G being small allows one to simplify the expressions for
the reflection and transmission coefficients and to obtain analytical expressions
for the V(z)-and A(z)-dependences. Furthermore an investigation of the V(z)-
dependences for the samples with small shear modulus makes it possible to solve
the principally important problem concerning the contribution of the skimming
wave to the formation of the output signal of the microscope operating in the
reflection mode. The mdjor results of our analysis are presented below.

II. REFLECTION MODE OF OPERATION

The character of angular dependence of the reflection coefficient

/\_lemz\x — X
R(x) = L
) /\~!x+mf\xnlx,

(x, = C*C?) depends on the relationship between C and C,. When the sound

@ = @.\b,
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velocity in immersion is greater than in the sample (C > C,), the reflection
coefficient is real and total internal reflection is absent. Since x, > 1 and x,, < 1,
for R(x) linear approximation may be used:

xﬂkv = &Nc - E.X s
where R, = R(O = 0°) = i 4 is the reflection coefficient at normal incidence;
1+y
y= aC is the immersion and the sample impedance ratio; o; and g, are the
@,—. ﬁ.h
immersion and the sample densities; f = a M ; -(1 — C}/C?). The output
y
signal amplitude measured in the experiment is
. . . 12
sin
Vz)=A ,T m5~m + PN + ml:wlm Alrw —2.cos mvw M
S S 4 ¢

here A is a constant, £ = ! k.x,,, symmetrical with respect to the point z = 0.
5

The curve V(z) is a sequence of alternating minima and decreasing maxima
(Fig. 2). The distance between the successive minima (maxima)

Az = Ax,, = Mx; (8)
c
depends on the wave length in immersion and does not depend on the ?.ovn.aom
of the object. On the contrary, the shape of the curve ¥(z) which is determined
by the value of the parameter

g RBa—PBx) | peg—00).R(O=6,)
(B2
is dependent on the properties of the object. If within the angular aperture of
the lens the reflection coefficient does not change its sign and the angle of zero
reflection (acoustic analogue of Brewster’s angle) is absent, a > 0. In this case
the curve V(z) has a clearly pronounced main maximum at z = 0 (curve 1,
Fig. 2). As a diminishes, the maxima of the curve V(z) decline, whereas the
minima rise (curve 2, Fig. 2); ata = 0 the secondary maxima and minima merge
(curve 3). The parameter a becomes negative when the angle of zero reflection
proves to be within the angular aperture of the lens. In so far as within the
aperture the reflection coefficient changes its sign, a part of the waves shaping
the reflected beam is phase-shifted through . With the interference of the
signals created by the reflected waves at the transducer, the main maximum
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dimnishes because of this shift. A minimum is formed in its place, and two
symmetrical maxima arise nearby (curve 4, Fig. 2). Furthermore, in the place of

. - . . 1
secondary maxima there originate minima and vice versa. When R, = — fix,,, the

2
minimum at z = 0 drops down to zero.
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Fig. 2. The dependence of the output signal amplitude ¥ of the acoustic microscope in the reflection
mode of operation on the shift of z in the case when total reflection is absent (C, < C). Numerical
calculation for @, = 30°, x,, = 0.25, 2 = 3 pm. The curves differ in the value of parameter a:

] —a=100;2—a=10;3—a=0;4—a= —225.

When the sound velocity in the sample is greater than the velocity in immer-
sion (C, > C), for angles @ > @, = arcsin (C/C,) a total reflection takes place:
the coefficient of reflection becomes complex and its modulus becomes equal to
1. If &> @,, the formatioo of the V(z) — dependence proceeds as in the case
of C, < C, discussed above. When the critical angle @, is found within the
aperture of the lens, the skimming wave participates in the formation of the
output signal and the curve | ¥'(2)| loses its symmetry (Fig. 3). Figs. 3 and 4 show
the results of numerical calculations of the ¥(z) — dependences for different
values of the ratio o = g/o, of the immersion and the sample densities (Fig. 3)
and for different positions of the critical angle @, within the angular aperture
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of the lens (Fig. 4). When ¢ < 1, the curve V(z) remains symmetrical, its period
is equal to Az, = A/x, and does not depend on the properties of the sample
(curve 1, Fig.3). As the immersion density increasses, the amplitude of the

v

Fig. 3. The dependence of the output signal amplitude ¥ on the shift of = in the case when total

reflection takes place at the interface of the sample and the immersion liquid (C, > C). Numerical

calculation for @,, = 30°, x,, = 0.25, x, = 0.125, A = 3 pm. Different curves correspond to different
density rations: | — 9=0.1,2 —p=1;3 —p=5.5.

v
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Fig. 4. V(z) — dependences for different longitudinal sound velocities in the sampie:
1 — x,=00672—x, =0.1253 — x, = 0.24. Numerical calculation for x,=0.25, p=5.5,
’ A= 3 um.
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skimming wave in the liquid grows and, correspondingly, the asymmetry of the
V(z) — curves becomes greater: the structure of the main maximum becomes
distorted and in the region of the positive z (the object moves towards the lens)
the period of the disposition of the minima and secondar maxima changes
(curves 2 and 3, Fig. 3). The numerical calculations are confirmed by an analysis
of the asymptotic behaviour of the ¥(z) — dependences at a large z, where an
oscillating dependence of the signal amplitude on the distance is observed. At
kz> 1:

Viz) = m {Ry — e . o;&d +4e : f@ gL C )
7

where

X —k=s
¢, = 2.arctan (ov/ x,, — x;) and f(kz) = .—, V\w‘l&. Ato< 1 flkz) ~ .
o 1+io% (kz)*?

and the second term in equation (9) may be neglected. Then the dependence of
the signal amplitude on z is expressed with sufficient accuracy as

__\S_n;m_)b T RZ — 2R, cos (kzx, — @y). (10)
Z

Its periodicity is determined by the value Az,, which follows also from the
numerical calculations. For heavy immersions (3 < ¢ < 15) the function f(kz)

in the range of values z ~ (5 = 40)4 is close to a hyperbola: f(kz) ~ |~| In this

kz
case the dependence of the output signal amplitude on the distance z:

1
V)| ~ M» {4y + A, cos (kzx,, + @,) + A; cos (ko x. + @) +
z

+ A, cos (kz(x,, — x;) + o)} av

(A;and g, are constants, i =1, 2, 3)is a superposition of oscillating dependences
with different spatial periods:

Az, = Ax,, Az, =Alx, (12)
bNiIh = M.\A.Ni - .th.

The results of numerical calculations demonstrate that the curves | ¥ (z)| with
different behaviour are observed, including two-periodic ones (curve 2, Fig. 3).
Nevertheless, a general rule exists: the period of pronounced oscillations (the
distance between the most proximate minima) is equal to the least of the periods

180

Az, and Az, _,. This result is illustrated by the curves | V(2), calculated for
different x, but with x,, fixed (Fig. 4). The analysis has shown that the use of
heavy immersions, for instance, a liquid, metals, makes it possible to employ
thes ¥ (z) — curves for the determination of the velocity of the longitudinal
sound in samples.

I1l. TRANSMISSION MODE OF OPERATION

Let us consider the simplest version of the A (z)-method, applicable to sam-
ples for which the transmitted beam is formed as a result of a single passage of
sound through the sample. It it necessary that an incident beam should not
excite transverse waves in the sample, and the refracted longitudinal waves
should not experience repeated reflections at the boundaries of the sample.
Biological tissues, polymer and biopolymer films, etc. may serve as examples of
such objects if water is used as the immersion. For the sake of simplicity we shall
also assume that the attenuation of longitudinal waves passing through the
sample is small. In this case the transmission coefficient is equal to the phase
factor corresponding to the change in the wave phase upon its single passage
through the sample:

T(O, d) = exp {iD(O, d)}, P(O,d) =kd CYC; —sin’ O. (13)

Substituting this expression into equation (6) and expanding the phase @(0, d)
within the angular aperture ©, in powers of the minor parameter
x’ =1 — cos ©, down to the terms x? inclusive, we shall write down A4(z) as

w a+ by, .Wu
A@2) = mev id,) % exp *éwlmmm: - QP\QW ds, (14)
where
312
xiy=1—c0s O, b= TEP._ |ma
T C C-
n'? . C
n@vnww»&m‘\ IM\,INM (1 = CC —z/d) m_msﬂ ILV

r C, (O C

and

1 , {TC, C;
= k{z — d(1 — ——kd - (1 - —zjd | =£{1 - .
@, = k{z — d(1 — C/C.)] 5 kd - (1 — C,/C — z/d) \ ﬁmﬂ muﬁ



The amplitude of the output signal 4 as a function of z is expressed through
Fresnel’s integrals C(y) and S(y) of the arguments

y,(2) = a(z) + bx,,,
yQ(2) = a(2)

|AG, d)} = w HIC(y,) — CUIP +[S(y) — S} (I5)
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Fig. 5. Formation of the A (z) — dependence for the transmission mode of operation. .
Left: geometrical determination of the output signal amplitude with the .:m:v of Cornu’s spiral;
right: typical 4 /) — dependences: a2 — thin sample. b — thick sample.

To investigate the character of the Aﬁmv-annozamzom, we m.rm: use geometrical
interpretation (15) based on Cornu’s spiral (Fig. 5). Plotting the <m_E.um of the
arguments ¥, and 1, along Cornu’s spiral taking into account the signs, we
obtain points P and Q. The length of the segment PQ is equal to the amplitude
B . .
of the signal | 4| normalized for the value ,iml_ The distance between the points
P and Q along Cornu’s spiral, equal to bx,, is m:annm:ao:ﬁ. of the coordinate z;
as - changes. a change occurs only in the position of the no:dm P and O., but Joﬁ
in the length of the curve between them. The curve | A(z)} is symmetrical with
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respect to the value z = z,, at which P and Q are disposed at equal distances
along Cornu’s spiral from its origin but at the opposite sides from it:

\S_Awov = Iv\mﬁmov. (16)
Condition (16) defines the coordinate of the point of symmetry: o
NoH&@IMWL.M.m.mA IMVR,\:W. Qa7
cC 2 C as

As a rule, the thicknesses of the samples satisfy the condition

d <33/[x;}1 = C/C]. (18)

For them bx}, < 2.44; the length of the intercept PQ is maximum when the
position of the points P and Q is symmetrical with respect to the origin of the
spiral and it decreases rapidly when the symmetry is disturbed and the cur-
vilinear intercept PQ is wound on the left-hand or the right-hand helix of the
spiral. The curve | 4 (z}| has a clear-cut main maximum at the point of symmetry
z = z, and decreasing maxima (Fig. 5a). On the whole, this curve is close to the
diffraction curve which originates in paraxial approximation, but with a refined
position of the main maximum in accordance with (17). For thicker samples, for
which inequality (18) does not hold, there originates on the curve | 4(z)| in the
vicinity of z = z, on both sides of this value a wide region of considerable output
signal values (Fig. 5b). The width of the region is comparable with its shift with
respect to the focus of the confocal system. However, an investigation of such
thick samples in the transmission acoustic microscopy is unrealistic because of
both small working distance between the lenses and strong attenuation of
ultrasound in the sample.

The results presented above constitute a theoretical foundation for the ap-
plication of the transmission acoustic microscopy in quantitative measurements
of the local velocity of sound for a large class of materials.
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TEOPETHUYECKUE OCHOBbI KBAHTUTATUBHON AKYCTUYECKON
MUKPOCKOIIUHA

O6cyxaaeTca BO3ZHHKHOBEHHE 3aBHCKMOCTH BXOAAUIEro CHIHAMA AKYCTHYECKOTO MHUKPOCKONa
OT KOOPAMHATHE =, KOTOPas ONpPEACTAeT B3aHMHOE PACNOAOXEHHE aKyCTHHYECKHX JIUH3 1 06pa3ua
B orpaxawowel u nponyckatowmeil MmoAax oJkcruyaTauuu (Tak HaspiBaembix  V(2) ‘u
A(z)3aBucumoctsx). Mccaeayercs cBf3b MeXAy XapakTePHCTHYECKUMM napameTpaMu V(Z)u A(z)
3ABMCHMOCTEH H JTOKATbHBIMH 3HAUCHUSAMM CKOPOCTH 3BYKa B 06pa3ile MATEPUANIOB C MAJICHBKHM
Mojy;1eM casura. Pe3y;isTaTel npeniaraemoil paboThl al0T BOIMOXHOCTb TEOPETHYECKOro o6oc-
HOBAHHUSA KBAHTHTATHBHOM aKyCTHYECKOH MUKPOCKONHU; B YACTHOCTH, OHM MO3BOJIALOT NOBBLICUTH
TOYHOCTb KBAHTHTATHBHBIX METOAOB.
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