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"HYDRODYNAMIC FLOW IN A POROUS CHANNEL
WITH VOLUME SOURCES OR SINKS OF MASS

SANYAL, D. C.,") Kalyani

A similarity solution is presented for the steady flow of an incompressible viscous
fluid through a porous medium in a channel with volume sources or sinks of mass.
It is shown that the problem can be solved by the method of matched asymptotic
expansions for small values of the permeability K of the medium corresponding with
any value of the source of sink parameter N. The pressure drop required to maintain
a given flow rate decreases with K. For fixed K, the pressure drop decreases with the
increase in N for N » 0 (volume sinks of mass) and increases with the increase in {N|
for N < 0 (volume sources of mass).

1. INTRODUCTION

Berman [1, 2) studied the problem of the steady two-dimensionnal flow
of an incompressible viscous fluid through a porous channel when the fluid is
withdrawn from the channel walls. Such studies gained importance in the
problem of lubrication, transpiration cooling, boundary layer control and
gaseous diffusion. The similarity solution for the flow as obtained by Ber-
man for the small suction Reynolds number was extended for the large suc-
tion Reynolds number by Sellers [3] and for the large blowing Reynolds number
by Yuan [4]. This problem was discussed from a different aspects also by
Yuan and Finkelstein [5], Donoughe [6] and Morduchow [7].

There is also another class of problems in the flow through a channel which
admits similarity solutions. Aladiev and Zaichik [8] have shown that the
similarity solutions of the Navier-Stokes equations exist for a non-porous
channel when there is a uniform volume distribution of sources or sinks of mass
in the flow. Na, Gupta and Nanda [9] extended this problem to include
the effect of a transverse magnetic field when the fluid is electrically conducting.

The purpose of the present paper is to consider the steady flow of an
incompressible viscous fluid through a porous medium in a channel with volume

'} Department of Mathematics, University of Kalyani, Kalyani, Nadia, West Bengal, India.

Pin — 741235

153



sources or sinks of mass and to show that a similarity solution can be found for
the velocity field. This poses a single perturbation problem and a solution is
obatined by the method of matched asymtotic expansions. It is shown that when
the strength of the volume sources or sinks of mass is small, the determination
of the velocity field involves a regular perturbation problem. The motivation of
the present analysis 1S that it has bearing in flows in a channel with evaporation
or condensation in the movement of underground water resources, for the
filtration of natural gases and oil through oil resevoirs and so on. The method
of analysis in the present investigation is similar to that of Na, Gupta and
Nanda [9].

[I. SOLUTION FOR SMALL PERMEABILITY

Let us consider the steady flow of an incompressible fluid through a porous
medium of constant permeability K in a horizontal channel. We choose the
x-axis along the central axis of the channel and the y-axis normal to the plates
of the channel. The governing equations are
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where u, v are the velocity components along the x, y axes, p is the pressure, 0
the density, v the kinematic viscosity and S is the capacity of the volume sources
or sinks of mass. It may be noted that the presence of S in equation (3) is due
to evaporation or condensation taking place in the channel. Clearly S> 0
corresponds to the sinksand § < 0 corresponds to the source. It is assumed that
S is constant in the present investigation.

It can be shown by group-theoretic methods [10] that the above equations
admit similarity solutions of the form
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where L is the distance between the plates of the channel, U is the average
velocity at the inlet x =0 and
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Here N is a non-dimensional quantity expressing the intensity of sources or
sinks. It is evident that the velocity components u and v are consistent with (3).

Using (4) in (2) we find that % is independent of x so that .

oy
Ip__y, (6)
Oxdy
From (4) and (1) we find that
[ A = (- O = P, Q%

where a prime denotes differentiation with respect to &, P is the dimensionless
pressure gradient and # is the dimensionless parameter defined by

~
P= L W.mu :||.||W|u ®)
E@QAT.MI x 2vek

P, n being constants. .

Noting that the flow through the porous medium of the channel is symmetri-
cal about the central axis y = 0, the boundary conditions are

@|:Ho, v=0 at y=0 )
oy

and the no slip conditions are
u=0,0v=0 at &NW. (109

Then the equations (4), (9) and (10) give the following boundary conditions for

S&):

f0)=0, f7©@=0, f=1 f(H=0. (1n

We shall solve the equation (7) satisfying the boundary conditions (11) when
K < 1,i.e. when n > 1. One would expect that for large values of , i.e. for small
values of K, viscous forces and the forces arising from the presence of the porous
matrix of the material would be of comparable magnitude in a thin layer near
the wall £ = 1. There would, of course, be a similar layer on the lower wall
&= —1. This would clearly involve a singular perturbation problem and
therefore we emloy the method of matched asymptotic expansions to solve the
problem. This Method has been discussed successfully by Van Dyke {I1].
It may be noted in this connection that although the differential equation (7) 1s
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of order three, P is unknown and this may be found by solving the equation (7)
subject to the boundary conditions (1 1). .
Let us write the equation (7) in the following form:

& —f + mwl U —(f— Of"1 =P’ (12)

where £ = n~' < 1. Outside the layer £ = 1, we take the outer expansion for f
as follows:

\A&S M\Mazv + N\Mcs + MN‘,\ME; F e A—wv

and the pressure gradient P in the form

¢y €, €
P=2242+2t+aet (14)

£ e 1
where the constants co, Ci5 €25 == are to be determined. The outer boundary

conditions are obtained from (11) as
foa) =0, feU@=0 (= 0,1,2,..) (15)

Zoﬁm 9& in view of the mwn:anw. we are considering Eo a.oi through the
porous medium only in the upper half of the channel. Substituting (13) and (14)
in (12) and equating different powers of ¢ we get

N .
, ouy’ __ flowy” ou) __ LV ou)'2 __ _ ou)'] = — ¢,
for = — g, S == fo” 4 £ AL (fo— OF™] ”

The solutions of (16) satisfying the boundary conditions (15) are

2
o= o=t 0= (T a)e “

To derive the inner expansion valid for the layer £ =1, we rescale the
variables in the following forms:

1 —f 1-¢. (18)
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Substituting (18) into (12) we get

3 2 2 2
do mnlw._, ﬁ?@v +(n—P @hﬁ =co+ &+ el + ... (19
dp® dn 4 i\d7¢ dn
The corresponding inner boundary conditions are derived from (11) as
o0)=0, P'(0)=0. “(20)

Note that the inner expansion is required to satisfy only the no slip conditions
at the channel wall. We expand @ as

D=O,+ ed, + D, + ... 1)
Using (21) in (19), we get on equating different powers of ¢
3
0 _d8_. =01 @)
dn® dn
and
&o, do, N[[/dd\ do,
2 _ 4% %ALV ra-2)S2]-a 0
dn dn 41\dp dn ‘

The corresponding boundary conditions for @, are given from (20) as
. O0)=0, PO)=0, (i=0,1,2). 4)
The solutions of (22) satisfying (24) are
D=c(l—n—e", (=01 @5

after removing the exponentially growing terms. Using (25), equations (18) and
(21) give the following three-term inner expansion for f as follows:

f@®=1—e(l—g—eN—ecal—n—e+.. @)

On the other hand, the .98@-8_.5ocﬂﬂnwinmmonmon\aogmwzoam_,oa va
and (17) as :

1@ = g e+ (N -a) e @7

To determine the constants c,, ¢; and ¢, we use the method of the asymptotic
matching principle of Van Dyke [11] given by:
The p-term inner expansion of (the g-term outer expansion) = the g-term

outer expansion of (the p-term inner expansion), (28) where p and g are any two
integers such that p is either g or ¢ + 1.
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Then

St =1
1 (rewritten in outer variable) (29)
1 (expanded in powers of &),

i

.\MH_MWE = hcﬁ . L .
= — (1 — &n) (rewritten in inner variable), 30)
N (expanding in powers of & and retaining one term).

Matching (29) and (30) we find
co= —1. 31)
Similarly, we have

in)

Il

l+el—n—e™ M

2-term
~1+¢ A~ i mv (rewriting in outer variable and removing the
& transcendentally small term) (32)
=&+ ¢ (expanding in powers of £ and retaining two
terms),
u.wﬁmle = ﬁ - .mﬁ_ﬁ

1 —&n— e (1 —€n) (rewriting in inner variable)
~1—en—é&q (expanding in powers of & and retaining two
terms)

Matching (32) and (33) we get

(33)

= —L (34)
And we have

W o —l4el-n—eN+e(l—n—c)

1+ mA_ L mv + & A_ A= mv (rewriting in outer vari-
& £

able and removing tran- (35)
scendentally small terms),

Q

=E+eb+ & (expanding in powers of €)
N
fotn=Erag+ (N -a)t
(36)
Rm+mm+m~®m|$v.

158

Matching (35) and (36) we find

N

¢, =——1. 37
1= 37

Now from (12), (13) and (14) we get the equation for f; as

ou)rrr ou)’ N ou)7 f(ou)r ou ou)r’ ou) flou) s+
e L fe — {f§ — EA = ] = e (38)

The substituting from (17), (31), (34) and (37) into (38) and subsequent integra-
tion leads to

N
o =(5-a)t (39)
which satisfies (15). Again, solving (23) with @, given by (25) and (31), we have
N
SNSVH:+m$+M3+:o:=lmW+_v, (40)

which satisfies the boundary, conditions (24). Thus the 4-term outer and inner
expansions for f are

[ =E+eE+ el e @ - yv : @D

and

f@=1+el—n—eN+el—n—e"-

Imu—,r:+ol_+W3+:nualm,wl\lr_vu_. 42)
Matching (41) and (42) as before we get
cy= 2 1.
8

Hence, for large n, i.e. for small K, the pressure gradient P given by (14) becomes

wnéfiﬁml_vlﬁm;&iﬁv (44)
4 n\§ B

and the 4-term outer expansion for f is
N

svuwhlm.
A m+=m+=~m+ﬁm+_v=u 3&
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The 4-term inner expansion (42) with £ = n~! shows the boundary layer beha-
viour near the channel wall for large n, i.e. for small K, the boundary layer
thickness being of order »\N . It is evident from (44) that the rate of pressure
drop decreases with the increase in N when N > 0 (i.e. volume sinks of mass)
and the pressure drop increases with increasing |N] when N < 0 (i.e. volume
sources of mass). Thus for fixed K (small), the volume sources of mass increase
and sinks of mass decrease the overall hydraulic resistance of the channel. Also
for fixed N, a decrease in K results in an increase in the pressure gradient along
the channel.

III. SOLUTION FOR SMALL N AND ANY VALUE OF K

[t is seen from (7) that for small N the solution of the equation (7) satisfying
the boundary conditions (11) gives rise to a regular perturbation problem unlike
the one given in Section II. Thus we expand f and P as follows:

f=fo+ Nfi + N*fo + ... (46)
P=PF,+ NP+ NP+ ... 47

The boundary conditions for f; are given from (11) as

[0 =/50), f)=1, fo(1)=0 (48)

and
fO)=f10)=0, f(H)=fA1)=0, (=12 (49)

Substituting (46) and (47) in (7) and equating the coefficients of N° N, N 2 e
we get

o —n’fo=Fh, (50)
\ﬂa»x>+wqalsnm<anm, (51)
%lﬁm+waafgn$|m:<ﬁaum. (52)

The solutions of the equations (50) and (51) satisfying the boundary conditions
(48) and (49) are

sinh né — né cosh
fo(g) = Bt — ng cosh
sinhn — ncoshn

, (53)
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f,6) = — :25:& _yql_l Amw=r~=|u00mr~5+
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+|~|mm=r:.8mr= +wm§:=.oomr= + “wwirnx@ +

4n? 4 4n
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+ mﬁ ; 5 \& +— 3
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n n

sinhn )
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. ﬁ% mwsrzml ulm 00w5=m+ |u|~ mwmw :& G&
n n
with
3
P=— n’ coshn , (55)
sinhn — ncoshn

__ 4n*(2coshn + cosh?#n) — 3n sinh®n.coshn — 3n*(3 sinhn + 2 sinh®n)

P, _ - (56)
16 (n cosh n — sinh n)’
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Figure 1: Variation of /(&) with & for different &, Figure 2: Variation of f(£) with & for different &.

Using (53) and (54), the values of f() and f’(£) against £ for several values

of the permeability constant & = L with N = 0.02 are plotted in Figures 1 and

n
2, respectively. It is seen that f(£) decreases steadily with decreasing & (Figure
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1). This reduction in the normal component of the velocity with decreasing £ can
be attributed to the decelerating influence of the porous material. On the other
hand figure 2 shows that a decrease in & results in a progressive flattening of

(&), which is the profile corresponding to the velocity component parallel to

channel walls. it may be noted in this connection that f”(£) remains almost
uniform for a given value of ¢ over the central portion of the channel and its
value decreases with an increase in &. However, near the channel walls, there is
a steep gradient in f7(§) (exhibiting the boundary layer behaviour) and the
magnitude of /(&) increses with decreasing ¢ unlike the behaviour of /(& near
the central portion of the channel. _
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ﬂ§10h5~.~>g=£m0~h—\—§ [IOTOK B MOPHCTOM KAHAJE C OFBEMHbLIMU
HUCTOYHUKAMM WJIM CTOKAMM MACC

TIpHBeneHs! PEICHHA TOAOGHA JUIS CTALMOHAPHOTO TOK2 BA3KOM HECKMMACHOM XHAKOCTH
yepes HOPHCTYIO Cpedy B Kanane ¢ o6heMHBIMH HCTOYHHKAMH WM cTOKamu Mace. TTokasauo,
4To npobeMa MOXET ObITH pELIEHa METONOM TOMEYCHHBIX ACCHMITOTHYECKHX Pa3loXeHHit

JUIS MaJIbiX 3HAYCHUH MPOHUIAEMOCTH CPElbl (k), COOTBETCTBYIOLUMX 3HAYCHUAM FapameTpa N
AcTouqHmKa My cos. Tlaenue fapenns TpebyeT YMEHBIICHUA CKOPOCTH TOKa B 3aBHCHMOCTH
ot k Jins GMKCHpOBAHHOTO k HajfeHHE AaBJICHHA YMEHBIIAETCA C YBCIAICHHEM Npis N>0
(06BemHpIe CTOKM MacC) M yBEIM iHEALTCA C yBenuueHueM |N| s N < 0 (06BeMHBIC HCTOHHAKH
Macc).
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