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GENERALIZED k-PHOTON COHERENT STATES
NTERACTING WITH AN ANHARMONIC OSCILLATOR

BUZEK V.,") JEX L.} Bratislava

We study the interaction of the generalized k-photon coherent states [2] with the
nonlincar medium modelled as an anharmonic oscillator. We show that the anhar-
monic medium tends to revoke the squeezing of an initially squeezed k-photon
coherent state at the first moments of the evolution. Nevertheless due to the periodic-
ity of the system under consideration, the initial squeezing is completely restored later.

L INTRODUCTION

Problems connected with the so-called squeezed states of light have been
xtensively studied in quantum optics in the last decade (for review on squeezed
tates see [1]). These studies were stimulated by the need for high presicion
neasurements (for instance, detection of gravitational waves) and applications
n communication technology.

-There are two main topics in studying the squeezed states of light. The first
s the problem of the generation of squeezed states of the radiation field. The
second is the interaction of squeezed light with a material medium. The present
paper is devoted to the second class of these problems. In particular, we will
study the interaction of the generalized k-photon coherent states [2] with the
nonlinear medium modelled as an anharmonic oscillator. We will show that at
least for k = 2 the Nth order squeezing exhibits exact periodicity.

II. THE MODEL

Tanas [3] has recently considered the interaction of ordinary (Glauber’s)
coherent light with a nonlinear medium modelled as a nonabsorbing anharmon-
ic oscillator with the Hamiltonian

H = wita +wm+$~. @.1)

He found that the light can become squeezed for large numbers of photons.
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This model has been generalized by Gerry [4] to the case of the k-

photon anharmonic oscillator model with the Hamiltonian

7 R T

H=wi Q+Mn a. (2.2)
Gerry has shown that this model Hamiltonian interacting with ordinary
coherent light gives rise to squeezing and that the squeezing can be enhanced for
a successively higher & (at least for some values of the average photon numbers).

Gerry has also analysed [5] the system described by the Hamiltonian
(2.1) when at the initial moment the radiation field has been supposed to be in
a squeezed SU(1,1) coherent state. He has found that the more photons are in
the initial state (which also means a greater initial squeezing for SU(1,1) CS),
the more rapidly the squeezing is revoked.

In the present paper we will study the system described by the Hamiltonian
(2.2). As we mentioned before we are interested in the interaction of such a
system with the generalized k-photon CS.

One of the possible generalizations of the ordinary CS of the harmonic
oscillator has been proposed by D’Ariano et al. [6—8]. This generalization
is based on the k-photon operators 4,, A; introduced by Brandt and Greenberg

[9]:

A =a'f(i), Af =f(yats, (2.3a)
where
(A1 —kn'?
\Qvam& it w , (2.30)

with the commutation relation
(A, Af1=1. (2.4)

In (2.3) the function [x] is defined as the greatest integer less than or equal to
x. Using these operators these authors have introduced in particular the Weyl-
Heisenberg group CS defined as:

IS, k> = exp(— 1£/2) exp (E4;)I0), (2.5)

where [0) is the vacuum state of the harmonic oscillator.
An alternative definition of the k-photon CS has been given by the present
authors [2] — the k-photon CS is defined as an eigenvector of the operator &*:

dl) = ala). (2.6)
One of the possible realizations of la> is
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@) = NS —Z nky = N exp(a, B7) 105, @7

a=0 / (nk)!
where N is the normalization constant
N = h{'2 (Ja)?*, k), 2.8)

(hy(x, k) is the hypergeometric function [10]). The multiphoton operator B; is
defined as:

P A ] (A — k) :

B = Tg (=0 Gy (2.9)

k Al :

In what follows we will study the interaction of the nonlinear media effective-
ly described by the Hamiltonian (2.2) with the generalized k-photon CS (2.7).

So, if we suppose the initial stae vector |D(t = 0)) to be equal to the state
(2.7), then the solution of the Schrddinger equation (# = 1):

mw_eev = Al0@)) - @10

for the state vector |@(2))> can be found immediately:

_ G Qm. n m AR\AV.. v
o0 5 (i),

Now we are ready to the study of the time behaviour of the squeezing properties
of the radiation field.

a\av. 2.11)

1. LIGHT SQUEEZING

To analyse light squeezing we introduce two hermitian time-dependent qua-
drature operators:
i = dexp (iwt) + a* exp(—ior)
17 )

2

P dexp(iwf) — a* exp(—iwr)
2 .
2i

3.1

with the commutation relation
[a,, ] = 2iC with C=1/4. (3.2)
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Following the idea of Hong and Mandel {11—12] we define two functions
gMfori=1,2

g™ = (4a)"> — (N - 1y1e»
' (N — 1)ncwne

: (3.3)

which measure the degree of the Nth order squeezing (for an even N) in the first
(second) quadrature. The Nth order squeezing condition looks very simple:

g™ <0 (3.4)

and the maximum (100%) squeezing is obtained for g™ = —1.
Further, we will analyse in detail the two-photon case (k = 2), where the state
vector |@(1)) is given (2.1 1)

_ x :
|@(1)y = Qu I. m I
(cosh |a,])"”? ..Mo /\g QGA 1 ANS: + 5 2n(2n :v NV 27> (3.5)

(we will write @ instead of @,). From (3.5) it follows that

4y =0 (3.6)
and so from (3.3) we obtain for the function g™
i3 = 2<a*ay + 2Rea?). (3.7)
For the mean values ¢(4*4) and <@’ we find the expressions
{@*d) = |a tanhja| = n; (3.8a)

(the average photon number 7 is an integral of motion)

iy = BP0 il exp(—2i7)), r=AL (3.8b)
cosh ¢

Orwo&:m the phase ¢ of the complex parameter @ to be equal to 7 we finally
derive for the function ¢{® the following expression

1
2cosh |a]

+ exp( — |a] cos 27) cos (7 — |q] sin 27)). (3.9)

91’(7) = 2|a] (tanh |a| —

(exp (la] cos 27) cos (t + |a] sin27) +

The function ¢((7) is periodical, with the period T = 27/A. Moreover one can

omﬂ._v\amza that the functions ¢{*(r) and ¢{?(7) are mutually shifted by the half
period:

¢ (D) =gt +m. (3.10)
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From (3.9) it follows that the maximum squeezing (~ 56%) in the first quadra-
ture can be obtained at 7 = 0 for |a] ~ 0.68 (or, which is the same, for 7 = 0.40).
The last is in contrast with the standard 2-photon coherent state (squeezed
state), when degree of squeezing increases with the intensity of the radiation field
(g¥ —» —1 with it —» ).
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Fig. 1 — Time evolution of ¢{¥(1) plotted for various values of |e}. Line 1 is for |a] = 0.25, line 2
for || = 0.5, line 3 for |} = 1.0 and line 4 for |af = 1.5.

q; (At)

During the first moments of the evolution the initialsqueezing in the first
quadrature became revoked, but then at ¢t = T it is completely restored. This
periodical restoration of the initial squeezing is the most characteristic feature
of the function ¢{?(7) in the present model. In fig. 1 the time evolution of the
function ¢{?(7) is plotted for various values of |a].

IV. DISCUSSION AND CONCLUSIONS

In the present paper we have analysed in detail generalized two-photon
coherent states interacting with nonlinear medium via two photon processes.
We have shown that the second order squeezing exhibits an exact periodicity.
It can be also shown that the function ¢{*(7) describing the fourth order
squeezing in the first quadrature (for details see [2]) as well as the functions
q{M(7) describing the Nth order squeezing are periodical g™ (1) = ¢M(z + T).
So we can conclude that in spite of the fact that the squeezing is revoked in the
first moments of the evolution, the initial squeezing properties become restored
atr=T.

The k-photon CS interacting with nonlinear medium via k-photon processes
will be studied elsewhere.
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OBOBUEHHBIE x-0OTOHHEIE KOT'EPEHTHBIE COCTOSIHUA,
B3AMMOENCT BYIOIME C AHFAPMOHUYECKUM OCUHUWJIATOPOM

B pa6ote usyueno B3aumMozaeicTee 0606LIeHHBIX K-(OTOHHBIX KOTEPEHTHBIX COCTOAHMI [2)c
HETHHEHHOM cpenoil, KOTOpas NpecTaBlieHa B BUae AHFapMOHHYecKoro ocuniaTopa. Iokasauo,
4TO aHrapMoHu4YecKas cpena Ha [ICPBOM 3Tarne 3BOMOUMH YHHYTOXKACT CBONCTBA CHATUS nep-
BOHAYANBHOTrO K-POTOHHOrO KOrepeHTHOTO cocTosaHus. Hecmotpa Ha sto, 6Gnarogaps nepuoamy-
HOCTH M3y4aeMOi CHCTeMbI, nepBoHauanbhoe CKATHE TONHOCTBIO BOCCTAHARIMBACTCA B MOC-
JICAYIOINE MOMEHTHI BpeMeHH.
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