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ON THE EVOLUTION OF THE SQUEEZED VACUUM
STATE OF AN ANHARMONIC OSCILLATOR

BUZEK V..") Bratislava

We find that if an anharmonic oscillator is initially in the squeezed vacuum state,
then the initial squeezing of the variantces of the quadrature operators can exhibit
periodical revivals,

I. INTRODUCTION

,_.,oamv\. when it is possible to generate squeezed states (for reviews on the
subject see [1-—3]) of the electromagnetic field in the laboratory [4—7], new
perspectives are opened in quantum optics — theoretical as well as experimental
ones. In this situation it is worth-while to analyse the influence of the material
media on the squeezing properties of the light field.

Previously Tanas [8] has studied the interaction of the coherent light

mm.E with a nonabsorbing linear medium modelled as an anharmonic oscillator
with the Hamiltonian

N&H&§+Q+M\l:m+v~m~. . L.y

He has found that if a large number of photons (~ 10° is present initially in the
system, then the light becomes squeezed significantly over the appropriate time
Nwwwo of At ~ 107° (i.e. the variance in one quadrature is sufficiently less than

Later the model described above has been studied by several authors [9—13].
In particular, Pefinova and Luks$ have studied in great detail the statisti-
cal properties of the radiation passing through the nonlinear medium modelled
as a third order dissipative oscillator interacting with squeezed light.

Hro recent paper by Gerry [15] has also been devoted to the problem of
the interaction of matter with squeezed light. He has studied the solvable model
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of nonabsorbing nonlinear medium modelled as an anharmonic oscillator (1.1)
interacting with squeezed light described as an SU(1.1) coherent state. He has
shown that the anharmonic medium tends to revoke the squeezing of an initially
squeezed SU(1.1) coherent state. Moreover, he has found that the greater the
initial squeezing, the more rapidly it is revoked and that at longer times the
variances of the quadrature operators tend to oscillate.

We will analyse the model of the anharmonic oscillator very similar to that
considered by Gerry, the typical feature of which are the periodical revivals
of the squeezing of the variances of the quadrature operators.

II. THE MODEL

Gerry in his paper [15] has studied the dynamics of the nonlinear oscilla-
tor with the Hamiltonian (1.1) rewritten in terms of the generators K, and K,
of the Lie algebra of the SU(1,1) group given in terms of the bosonic operators
aand a* ([a, a*] = 1):

bnwegiﬁx K, =@y, k =Llap .1

|
2 2

The generators K, and K, satisfy the commutation relations:
(Ko, K.]= tK,; [K_, K,]=2K,. 2.2)

Using (2.1) the Hamiltonian (1.1) can be rewritten (up to constant terms) as
follows:

H = hoK, + MK, K_. (2.3)

In our analysis we will also consider the Hamiltonian in the form (2.3), but
with a different realization of the SU(1,1) Lie algebra. Namely, we will use the
Holstein-Primakoff realization of the SU(1,1) Lie algebra [16—18] with the
Bargmann index [19] k = 1/2:

5"W€+n+na+v, K, =+a"aa"; K_=a-/a*a. (2.4)

using the generators (2.4) we can find the solution of the timedependent
Schrédinger equation for the state vector | (1))

i Mw 1)) = H|P(0)) @.5)

with the Hamiltonian given by the relation (2.3). If we assume the initial state
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(at r = 0) to be an SU(1,1) generalized coherent state {15, 20, 21], which for the
squeezed vacuum is

Eﬁsvm_@n:l_%zm ﬁ%m_l\_%g ‘-w_nemm@_we,s.e

then the state vector |¥(1)) for 7 > 0 can be obtained:

Py = 3 Qe tom+ Ky, @7

n=0

The parameter £ can be written as:
£= —|e*® = —tanh @f2¢%°, (2.8)

where @ and @ are the SU(1,1) group parameters (@ has the range (— o, + )
and @ is from the interval (0, 7)). The parameters }£] and @ are related to the
average photon number 7 = {a*a) in the following way:

2
A= IF = sinh? @/2. 2.9
1 — &
For the purposes of the following calculations we will write down the mean

values of the photon number operator {(a*a), the photon amplitude {a) and the
squared photon amplitude {a*):

Ay =<a*ay =) 2nP =n, (2.10.a)
n=90

A, ={aye™ -9 =, (2.10.b)

Ay =La’H e P = —|E Y P(2n+ 1)e A+ (2.10.c)
n=10

where P, is the distribution of the squeze vacuum state |£):

r=iof=a - ()’ o @11

With the distributions (2.11) the expression (2.10.c) for A4, can be calculated in
a closed form [22]

_ _ 2172 L —4dide
4, = —1e1A —1g)"e ™ (2.10.d)
A~ _ _ﬂuﬂlm_fvu\w
From (2.10) it follows that the average photon number is the integral of motion

(this is the consequence of the commutation relation [K,, H] = 0) and the mean
photon amplitude is equal to zero.
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IIl. LIGHT SQUEEZING

To analyse the squeezing we introduce two Hermitian timedependent qua-
drature operators

I : 5 .
Q.Aﬁv — MAQ@.:EKQ + N( 01..~E\3v, Aw—v

Quﬁﬁv - NH AQ Oz§ -0 __ at ml:e: - m_v, AW.NV
1

where §is an arbitrary phase chosen to be equal to @. The commutation relation
for the operators a/(r) is: ’

[a(1), ax(0)] = w . (3.3)

One of the consequences of this commutator is the uncertainty relation

V(). vi(t) 2 P, (3.4)
16
where V(r) are the variances of the quadrature opeators a,(t):

Vin) = <a?y — <a’. : (3-3)

Since the squeezed states are defined as the states with a smaller uncertainty
in one quadrature of the field than that associated with the coherent field (see,
for instance, [1—3]) the squeezing condition can be written as:

1Z0)) AW for i=1 or i=2. 3.6)

The variances of the quadrature operators a, can be expressed through the mean
values of the photon operators (2.10):

-\_SH W _H\Ae + W +_~m\&l NW@ALQ G.q.mv

ssn WTQ + .w. |w§~| EB}L QL.S

or, using the relations (2.10) for the functions A4,(r), we obtain:

__+_m_wt N_m_cl_m_as u
_\_nl | i
NS Z T Y + (2167 cos 8 187" oom At; + 5 eﬁ, G@
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where

|£]? sin 8¢

. (3.9)
1 — & cos 84t

@ = arctg

From the explicit expressions for V(r) several properties of the variances of
the quadrature operators follow:

1) The functions V(r) are strictly periodical with the period T = %

VA1) = Vit + m/22). (3.10)

This means that if at 1 = 0 one quadrature is squeezed, then this squeezing will
appear periodically at later times.

2) There exists a relation between the variances of the quadrature operators:
i(®) = Vy(t + n/4A). _ (3.11)

This means that the variances M(1) and V;(r) are shifted mutually in time by the
half-period of the squeezing revivals.
3) The sum of the variances V() is the integral of motion in the discussed
model:

Vi(e) + Vir) Hm+wnwgm: 0. (3.12)
4) To determine how repadly the squeezing in revoked in the initial moments of
the evolution (t < n/A) we evaluate the time derivative of the function V(1) (this
variance is initially squeezed) at time ¢ = 0 and examine its dependence on the
initial conditions, particularly on the initial photon number. For the first
derivative we obtain:

ol _, (3.13)
ON =0
Since the first derivative vanishes, we have to calculate the second:
2
V
m[%@ = 8A*VA(A + 1) [157* + 127 + 1]. (3.14)
t =0

This derivative is strictly positive and it increases by the increasing initial photon
number. From this it follows that the more photons in the initial state the more
rapidly the squeezing is revoked (this is the situation identical to that in Gerry’s
case). Nevertheless, it should be stressed once more that the initial squeezing is
periodically restored at a long-time scale (see relation (3.10)).
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5) Finally it is also worth-wile to mention that the variances V(1) have a very
simple form for the times ¢ = kz/84 where k = 0, 1, 2 ... (see Table 1).

The time evolution of the variance V(1) for various values of the initial
squeezing (or, which is the same, for various values of the initial photon
numbers) are plotted in Figure 1.

Table 1
The v :lues of the variances V(1) expressed through the parameters |&] and @ for the times 1 = N,IN £
82
k=0,1,2....
V) 40
- 1
t=0 L _N.Hwnlm I|I|_+_m_uwm+m
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_Ummr—ﬂn 1.a Time evolution of the variances —\_:v —umm_.:.n 1.b Time evolution of the variance —\_:v
and V(1) for A= 1.0. fori=10and 7 = 4.0.

IV. CONCLUSIONS AND DISCUSSION

Thus we can conclude that in the present model of the anharmonic oscillator
the squeezing of the variances exhibits periodical revivals for any value of the
initial squeezing. This periodicity is preserved not only for an SU(1,1) GCS, but
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for any initial state of the oscillator-. Particularly. if at 7 = 0 the system is in the
Glauber conherent state. then the variances of the quadrature operators oscill-
ate with period T = 7/4 (see [13]). Moreover, it can be shown that the variances
can be squeezed in the evolution.

In the present paper we have analysed the dynamics of the anharmonic
oscillator without dissipations. To make the problem more realistic, the dissipa-
tions should be taken into account as it has been proposed by Pefinova
and Luk3 [14). This problem will be discussed elsewhere.
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IBOJNIOLMS CKATOTO COCTOSSHMS AHT APMOHMYECKOIO OCHUWLIATOPA

B UNQO#N TT0KA33aHO. 4YTO OG‘AS.NI—.NUKOIS-—OONOW— OCHHJUIATOD NMEPBOHAYATBHO HAXOAHTCA B
CXATOM COCTOSHHHU. TO HauaJbHOE cxarune av:a_nﬁ%w::wm KBaJApAaTYPHBIX ONCPATOPOB nepnoam-
“E€CKH BOCCTAHABJIMBAETCH.
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