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THE FIRST-PASSAGE-TIME PROBLEMS WITH
TIME-VARYING DRIVING FIELDS

BEZAK V..)) Bratislava

The first-passage-time problem is analysed for a diffusion process running on a
line segment with absorbing ends. The process is assumed to be driven by a general
time-varying field. Emphasis is put on the derivation of compact formal expressions
in a “greenistic style”. General formulae are derived for the probabilitics of the
survival on the segment, for the related probability densities of the first-passage times
and for the statistical moments (including the mean) of the first-passage times (re-
sidence times).

1. INTRODUCTION

“he theory of the first-passage times is a classical part of the theory of
‘hastic processes that has been worked out in great detail for time-homoge-
us Markov processes [1]. If the Markov processes are inhomogeneous in
s, the theory becomes much more complicated but we must well cope with
fact when we want to understand results obtained by some up-to-date
pmatographic experiments or, say, by the puised-field gel electrophoresis.
e latter is a relatively new technique which has evoked much interest among
physicists, since it enables to separate effectively large DNA molecules
+4].)Having in ming such applications, Fletcher, Havlin and Weiss
{W) [5] have recently elaborated a first-passage-time theory with a time-
)endent drift. They have presented two versions of their theory: 1) a random-
lker.theory and 2) a diffusion theory. Here we will only comment on their
‘usion theory.

Their basic equation was the forward Kolmogorov equation

op o’p op
op—Lt_v)L, >0, ¢
ot ox? Ox )

a diffusion process on a line segment with absorbing ends at x =0 and

1) Department of Solid State Physics, Comenius University, 84215 BRATISLAVA, Czecho-
-akia

337



X =L > 0. In particular, they have assumed the uniformi initi
bilty density b ¢ unitormity of the initial proba-

1

P(x,0) = py(x) = - = const.
o 7 (2)
The probability density p(x, 7) has to fulfil the boundary conditions
PO, ) =p(L, 1) =0. (3)

:m nM. (1), D > 01s a constant diffusion coefficient and v(¢) an arbitrary function
o .a e :So. variable ¢. In numerical calculations, however, FHW have used the
drift velocity () in a special form,

v(1) = V sin (wyt + a), 4)

m:aaa mro assumption that the constant ¥ is small. (In some calculations, they
mw»m.o osen .:5 phase o as Z€r0; anyway, we will not specify the function v(2).)
ter having represented P(x, t) as the Fourier series

H
P9 = Y ) sin(2), ©)
n=1 v .
T;Icm have derived an infinite set of ordinary differential equations for a,(s)
(n= ,.N, ---) and shown that these €quations can be solved in a perturbational
way (with respect to the parameter 1), o
Nevertheless, such a scheme, as we will show in the present paper, is not the
best ?o:._.m modern theoretical viewpoint. Our scheme (Section IT) — avoiding
:uw €quations for a,(7) at all — provides surely a more compact formulation
being much nearer to the “greenistic ideology™.
Oc.n basic equation is not €q. (1) but rather the backward Kolomogorov
€quation for the fundamental solution P(x, r; Xo, 1y). We rewrite this equation

into an _..EnmE_ form. This idea will enable us to make formal developments of
the survival distributions

L
S(t;x,) = % dxP(x, t; x,, 0), 6)
1]

L
s(t) H.“ dxp(x, 1) @)
0

with Téspect to v(¢) in the most straightforward way. In (7), we have defined the
probability density

p(x, 1) H~‘. dxo P(x, .: X5 0) po(x,). (8)
0
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In Section 11, we comment on some further notions (such as the probability
density of the first-passage times and the mean residence time). It is not our aim
to present new numerical calculations in this paper (since we take those publish-
ed in Ref. [5] as sufficiently instructive).

1. GENERAL THEORY

We define the Green function P (x, ¢; x,, ty) first:

oP o°P oPr

— =D —v(t) —, 1>, 9

ot x> C@x ¢ &
lim P(x, 1; xo, 1,) = 8(x — x,). (10)

=1

(Taking the initial distribution po(x) for 4y = 0 as an arbitrary function given in
advance, we see that p(x, ) given by formula (8) is the unique solution to the
forward Kolomogorov eq. (1).) The function P(x, 1; xy, y) is simultaneously the
fundamental solution to the backward Kolomogorov equation:

2
lwwnb@lw+c§vwm, Iy <t (11)
o1, Ox¢ Ox,
lim P(x, 1; xy, £,) = 8(x, — x). (12)
0—1
Clearly,
PO, tixy, 1) = P(L, 15 X0, 1) = 0 (13)
and
P(x, t; 0, 1,) = P(x, t; L, 1) = 0. (14)
We define the non-perturbed Green function By(x, 15 xo,°1,):
2
— @m = n@lb» 1, <t, A_ wv
1, 0xg
Lim Fy(x, t; Xy, £) = 8(xy — x), (16)
0n—-1
Fy(x, 150, t,) = Pyx, t; L, t,) = 0. (17)

Explicitly, we can apply the construction

2 & n’n’D . (mnx, mx
By(x, t; xy, 1g) = = ex IlInQINLmSA aniﬁlv. 18
of 0> Zo) NL:M. vﬁ IE 0 I3 I3 (18)
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(The sum converges rapidly if ¢ — 1, 2 12/(2°n’D); for small values of s — 1,
however, it is more advantageous to use another form By(x, t; x,, 1), the
so-called path representation — cf. [6] — which can be obtained from formula
(18) if the Poisson summation procedure is applied.)

The integral form of equation (11) is

P(x, 15 x4, 0) = Py(x, 1; x,, 0) +

OP(x, ¢;

x,r
Z 0 et 5 5, ) (19)
Ox

1 L
+ Y dru(r) Y dx’
0 0

(We have chosen 1,=0)
Hence we obtain directly the development

o«

P(x, 1, X0, 0) = 3" PO, 1; x,, 0), (20)

i=0
where

PO(x, 1; x5, 0) = Py(x, 1 x,, 0), (21)

f L . ’ ’
PO, 1 x,. 0) = % dr'o(e’) % n_&@a?@i,:a? £ %, 0), (22)
o 0 x

1 rr L rL
P3(x, t; Xy, 0) M.\. % dr’ de"v(t) ctd.‘. % dx’dx” x
0 JO 0 Jo

y @mvﬁkw N“ \4=w Ntv @chﬁ.k.lu N:“ .V\\4 \\v
ox” ox’

N&A\ﬂﬂ N\u .Xou cvu A.‘wav

.08. irws Eowcacﬁmmm:mﬂaam: formulae (22), (23), we can carry out the
::omnm:o: with respect to x* and x” explicitly (Appendix). )

,_,.wn Integral equation (19) implies directly the integral equation for the
survival distribution S(t; xp) (cf. definition (6)):

1 L P
»M,ANH kov - .WQAN“ .Xov +1\. QN\CAN\V:‘; Q.H\ @%Ak' N_ X s ! v N“VA.P\. N\“ .Xou OVeANL.v
0 0

ox’
where
L
Suts x0) = [ e, 15 x, 0) =
0
4 o 2 — D — -
_4 exp ‘Hl °(2m : 1) b@ sin —Hiwi :»Q ) 25)
Tm=1 L- L
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Thus we can obtain the development

S(t; xp) = M S Xp) (26)
i=0
for the survival distribution S(¢; X,) when the diffusion starts from the point x,;
here
L
SWt; x3) = Aﬁ dxPW(x, t; x,, 0); 7
0
or the development

w

s) =Y s9(z) (28)

i=0
for the survival distribution s(¢) in the special case when the initial distribution
Po(x) is uniform (cf. definition (2)); here

L
s9(f) = w % dxoS(1; x,). 29
0

1II. CONCLUDING REMARKS

The survival probabilities S(z; Xg), 5(2) define, respectively, the probability
densities D(z; x,), ¢(1) for the first-passage times:

D(t; xg) = — 210 xcv, (30)
ot
o) = ~ L0 a1
dt

Indeed, the probability for the process under consideration to reach one of the
end points (x = 0 or x = L) and to become thus “annihilated” is 1 — S(¢; X,) or
I — s(7) if the initial distribution is Po(x) = 6(x — x,) or py(x) = 1 /L, respective-
ly. Then — (05/0¢).d¢ and — (ds/d¢) . dr are the corresponding probabilities that
the exit through one of the end points (i.e. “absorption™) takes place during the
interval (¢, ¢ + d¢). The functions D(t; x,), @(r) are (and must be) non-negative.,
We denote by T;(x,) and 1, the residence times (corresponding to the distribu-
tions S(z; x,) and s(1)); obviously, T)(x,), ¢, are stochastic variables. (Note that
the residence time and the first-passage time are synonyms. For a specialist in
chromatography, it is the same notion as the so-called elution time.)
Their statistical moments are defined by the expressions (for p=12 ..):

AT )P = % " dur o xp), 32)
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ry = % i (), (33)
0

Integrating them by parts, we can also write

ATC)P = p s " 1S ), (34)
0

ary = p % " der (), 35)
0

vm:_cn:_mn ly, taking p = 1, we can write for the mean residence time the for-
mulae

(Tx) = % " ds(; x,), (36)
0

=1 disq). (37)
0
MMHNV Mm::wH Eo amwom.ovﬂana (27), (29), we obtain easily the corresponding
ments in p(s or &(z; x,), (1), 1] isti
TPy, iy o), @(1), as well as for the statistical moments

Finally, let us note that the problem solved in the present paper is closely

The reader .s&o wishes .8 learn more about the reliability theory or about the
so-called failure modelling should also consult the papers by Lemoine and

APPENDIX

Our intent is to perform the x-integration ; i
-integration in formulae (22) and (23).
all, we note that the integrals S

Gy = ﬁ dx QsinGrbx'/L) oo (mkx'/L) (A.1)
0 : Ox’
Teépresent L-independent numbers:
2kl . .
G, - 3 if k + lis odd : (A2)
0 if k + lis even

(where k, [ are two integers).
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Utilizing the series (18) for Fy(x, t; xy, 1,), we obtain the expressions:

L - ’ 14
4‘. Q.x\mwmvﬁxu No\ﬂ.NVEOA.x\‘ N\“ .Ncu Ov”
[{]

ox’

x 272 2y2
= N M exp _Hl g r'p (t — \L exp _Hl kD NQ G,, sin ANIQMV sin AH\C&VJ

L2 L* L L L
(A.3)
L oL . ” " "o, ’ ’
4—‘ /‘n Q‘X.\ ﬁm.x‘\ @NuOAku Nu X 3 N @@Ak ¢ ! N h X k) N vmcﬁ.ﬁ\u N\w kcu OV =
o Jo Ox” ox’
g = 2m?D ; _H 7D
=— exp| — (t—1")|exp| - (t" — 5“— .
L \.Wu 1 P H L’ L
22D g . Aﬁzxv . A&Qv
“eXp| ——— 1" |- G,G,, sin | —= } sin [ ZX0} . A4
v_H L2 1y I3 L (A.4)
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TTPOBJIEMBI BPEMEHHU ITEPBOI'Q BBIXOJA 3A I'PAHHULY
IIPH BPEMEHHO-TEPEMEHYMBBIX APEN®YIONUX MMOJAX

B cratee manaraercs npo6nema BPEMEHH NIEPBOTO BEIXOAA 32 JOOYI0 M3 rPAHMI JHHEHHOIO
CCIMEHTA, BAOJL KOTOPOTO NPOMCXOAMT mupdy3us. Hpennonaraercs, uro nuddy3noHHsrit
npouecc Apeiidyer B npucyTcTBHM 06IIero BPEMCEHHO-TIepeMeHynBOrO nous. [lomuepkusaercs
BO3MOXKHOCTD {IOJy4CHHS KOMIIAKTHBIX (POPMAbHBIX BBIDAXEHHH B (TPHHHCTHYECKOM CTHNe.
Buiseaensr obuume dopmysr mus BEPOATHOCTEH NEPEXHBAHUA HA CErMeHTe, A POACTBEHHBIX
BEPOATHOCTEH BPEMEHH HEPBOTO BLIXOAA 33 TPAHHLY H /IS CTaTUCTHYECKUX MOMEHTOB (BKJIIOYas
CPCIHEE 3HAYCHKE) BPEMEHH NEPBOro BHIXOJA 34 Tpanuuy (Bpemenu pesuneniuu).
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