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A NOVEL APPROACH TO FORCE AND STANDARD
BAND-STRUCTURE CALCULATIONS

STICH, 1..') Trieste

.> unified approach to the density functional theory and molecular dynamics is
reviewed. Starting from the molecular dynamics equations the standard electronic
m::o::d. problem is reformulated and 2 new method based on the conjugate gradient
strategy is introduced. Finally, the unified approach is used in a first-principles study
od short-range order and bonding in metallic liquid Silicon.

L. INTRODUCTION

. It has always been a dream of condensed-matter physicists to predict proper-
ties of the matter such as atomic structure, chemical bonding, dynamical and
transport properties. It is a great challenge to cope with this problem by a
Tngorous quantum-mechanical calculation of many-body interatomic potentials,
ei:ov automatically conveys information on structural stability, chemical
Uo:a_:.m and more generally is a basis to calculate many-body forces to study
aw:ms_ow_ and transport properties. Although old in principle, the lack of
computational possibilities and new ideas have until recently preciuded a practic-
al use of this idea.

Om the other hand, the well-known Density Functional Theory (DFT) 1]
Eos.anm a very satisfactory description of interatomic potentials and chemical
Uo:a:gmu whereas the Molecular Dynamics method (MD) [2] is successful in
predicting both equilibrium and non-equilibrium properties of condensed Sys-
tems. Thus it is a natural idea to connect them. However, this is not easy because
the DFT is Computationally so intensive that its straightforward application to
calculate forces for MD was not manageable.

_ﬂn.om:zvn new theoretical methods have appeared that overcome the above
mentioned difficulties and allow for a unified approach to MD and DFT {3]. The
method became known as the ‘Car-Parrinello method’ (CP). CP is physically
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very appealing because it not only allows for an ‘ab-initio’ MD and finite
temperature studies of condensed matter (including thermal treatments and
simulated annealing [4]) but it also recasts the standard electronic structure
problem in a very lucid and convenient way.

The paper is organized as follows. In Sect. 11 the basic notation is introduced
and a brief summary of the main concepts of the CP is given. Sect. III is devoted
to the application of the CP method to the standard electronic structure pro-
blem. In particular, we present a convenient new method for the solution of the
electronic structure problem. Sect. IV deals with the application of the ‘ab-initio’
MD to non-simple liquid metals. As an example we present our results on the
simulation of liquid Silicon (1-Si) by CP. Finally, Sect. V contains our
conclusions.

IL AN ALTERNATIVE TO CALCULATE MANY-BODY FORCES

We summarize here the basic idea of the CP method and compare it with
more traditional approaches. Let us start from the Born-Oppenheimer ap-
proximation (BO) and the assumption that the ionic motion follows the classical
mechanics. The corresponding point on the BO surface for each ionic configura-
tion {R,} (ground-state energy), ¢l{R,}], is defined as the minimum of the
functional E[{y,}, {R,}] with respect to ‘electronic degrees of freedom’ {y}, i.e.

LA = min E[{y,}, {R,}]. )

:S.v

We follow here the DFT [1], where

occ

Eliwi, (RY) = 3 farytn( = 1)) + [arv=(om(n +

Z,Z,

1 nn(r) . 1
el r 24 F — 2
+N?& - + E+TW§:§ )

and the principal quantity, the ground-state electronic density n(r), can be
expressed in terms of N occupied single-particle orbitals as

oce

n(r) = 3 lw(np. 3)

The atomic units e = # =m, = 1 are used throughtout the paper. In eq. (2)
£E*[n] is the exchange-correlation energy [1], ¥ is the total external potential
felt by the electrons, and Z,; are the charges of ionic cores. The single-particle
orbitals {y;} are subjected to orthonormality constraints:
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Jdryxny(n = 8. (4)

he BNS%..UOQ% force acting on i
I \w g the ion J can be defined close to the

oce

fi= =VaEllw), (R = B~ 223 [ar 2] _Lga ey,

7Rl 2
+fdr ) L SE our
I r—r " s YT FT =22 % far Hmor g1y, (sa)
= oR,
wr_ 1« Z,Z(R— R ayex
where FfF = _ il llif)) —fdr () n(r) is the Hellmann-Feyn-

277 |R,— R,? OR,
man (HF) E force equal to the classical force arising from all charged ions and
the electronic .or.m:mo density calculated quantum-mechanically, and ¢ is the
.hmm_.msmo .EE:E_Q imposing the orthonormality constraint (eq. (4)). FH._.OQEY
ing the finite precision in the electronic minimization in eq. 1 (HP T — JPFT ¢
(5a) can be recast in the following form . i

Fi=F" — 2@ [ar Q¥ gorr &l On(r) 7
—gly,— [dr HPFT — fjorm),
7 oR, I oR, a = BB
The first oo:,on.:on to the Eﬁ force is known as the Pulay force [6], whereas the
second term arises due to imperfect minimization of the functional in eq. (2).

Clearly, if {y} are expanded in a basi
5 ; 8 set that doesn’t make i
{R;}, then the Pulay force vanishes, . wrerence to

For that reason we limit our di i i i
t 1scussion to the single-particle orbitals e -
ded into plane waves 7] . i

vi(n) = qum..as (6)

with the sum truncated to include only M plane waves.

o:A.VMMM OMM,\M“:%@_ Mvnamar Now proceeds as follows. Atomic coordinates are
>CIl. bor that configuration the self-consistent charge density j
solving the Kohn-Sham (KS) equations [8] y s crledlated by

HTy(n = gy(p (N

mem_nm:w—g some sort of Emi« diagonalization technique — for more details
o OnMr T MV. CmE.m that Qoﬁm.:w in formulae (5) allows to calculate forces acting
§. Then the ionic positions are updated and the self-consistent calculation
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repeated. The calculation of the charge density by matrix diagonalization
requires O(M?*) operations that must be repeated /. times to iterate the density
to self-consistency. Clearly, this procedure is inefficient because it generates all
the M eigenstates, whereas only the occupied N orbitals are really necessary to

calculate the forces.
Let us now outline how the above difficulties can be avoided within CP and

the selfconsistency and structure determination achieved simultaneously. The
MD method may be invoked by setting up a quantum-classical system defined
by the Lagrangean [3]

L=y WEE_\.\N_N +MW§& — Eltvi}, (R} + LA, [dr(ydy, — 6,). (8)
i I i

In eq. (8) the dot indicates the time derivative, u is the fictitious mass of the
single-particle orbitals to define the fake kinetic energy of the wavefunctions, M,
are the physical ionic masses, and A is the hermitian matrix of Lagrange
multipliers imposing the orthonormality constraints from eq. (4).

The lagrangean in eq. (8) generates the following fictitious dynamics for the

electronic orbitals

v oE
up(n )= ————+ Y Ay(r, ) = —HMy(r, 1) + Y. Aywi(r, 1)(9a)
%{\..Aﬁ Nv j J

and the real dynamics for the ionic position
MR, = —V,E. (9b)

The force in eqgs. (9a) acting on the electronic orbitals is of two different kinds:
the force from the Hamiltonian and the force of constraint. Since we want eqgs.
(9b) to generate the BO trajectories some additional conditions have to be
satisfied:

a) The system must initially be prepared in the ground-state.

b) The electronic dynamics must proceed fast in order that the electronic
orbitals have always time to catch up their delay with respect to the ionic
positions, i.e. the dynamics must be adiabatic with no energy transfer between
electronic and ionic subsystems. This, in turn, means that 4 < M, Only then eq.
(1) will be approximately satisfied. The important point is that the electronic
optimization proceeds dynamically, following second-order differential equa-
tions.

Classical kinetic energy can be ascribed to the system

auMwia;&:MW\Sﬂ (10)
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mm:om__zm can be carried out with the System and for T — 0 the equilibrium state
with a minimal E with respect to both {v;} and {R,} can eventually be reached.
Thus a_mmozmzwm:.o:‘ self-consistency, and ionic relaxation are achieved simul-
taneously and on the same footing. Moreover, €gs. (9) constitute an ‘ab-initio’
form of MD.

The CP does not generate any redundancy in the information since it involves
only the N occupied orbitals. The kinetic energy is diagonal in the Fourier space
whereas the potentjal energy is diagonal in the real space. Thus if Fast woclﬁ_
Hoor.E@zmm (FFT) are used to calculate Hx y always in the ‘easy space’, it
requires Q.Q< M In M) operations, and additonal O(N? M) operations are ,n -
quired to impose the orthonormality constraints. Since usually N < M this
compares very well with the direct approach requiring O(M?) operations.

IIl. ELECTRONIC STRUCTURE BY DIRECT MINIMIZATION OF THE
ENERGY FUNCTIONAL

In this .maoaon the standard electronic structure problem is rewritten in the
_msm:.mm&. introduced in Sect. II. In particular, we introduce and test a new
effective :.nn:?n method as an alternative to solving the KS equations.

The objective now is to solve €q. (1) for fixed {R,}. One can directly start from
egs. (9a) and perform simulated annealing by reducing the system temperature
defined through €q. (10), T— 0. In equilibrium {¥; = 0}, and it is easily verified
that €gs. (9a) are then identical (within unitary transformation) to the KS
equations.

. ~.H has w.OnEm:v\ always been part of the theory to carry out the minimization
indicated in eq. (1), but it has until recently never been used in a practical way.

Hy(n) = gy, (n
~ 2 ext H,
w-% + V) + v sz?s e (1)

OB e the

n(r) — is the Hartree potential and p*(r) =
. lr—r’| on(r)
exchange-correlation potential. The Schrodinger-type egs. (1 1) are called the
W.o:n-mrﬁ: equations. In the plane wave formalism, using eq. (6) in eq. 1
yields for any k vector from the Brillouin zone (BZ) the following equation

where VA(r) = fdr

Wmma.% = grkenk (12)
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with the Hamiltonian matrix
~ ¥ 2 ext X¢
Hg = M;L. Gl 06+ VE_ g+ Vit 6r+6 T UG ¢ (13)

The straightforward diagonalization of the matrix H g requires O(M %) opera-
tions. If instead eqs. (9a) are used, the cost of a single step in the limit of a large
system is O(N”> M) [9], as explained in Sect. II. This represents a substantial
saving in a single MD step compared to the straightforward diagonalization,
but usually the number of self-consistent iterations 7. in the MD method is
larger. Hence, in this form both methods may be of comparable efficiency. Thus
the key point is to reduce I, to a more manageable value.

Technically, the above method is merely a refinement to expedite the conver-
gence in a self-consistent calculation by replacing the diagonalization techniques
by FFT techniques. But it is probably more than this, since it reformulates the
standard band-structure problem in an original form of great clarity and sim-
plicity.

The main aim in reducing I,_ is that if the ions are kept fixed only a single
minimum is encountered [10]. In this case the efficiency improves if MD is
substituted by a method allowing only for downhill moves. The simplest way to
do it is provided by the Steepest Descent method (SD) which can be formulated
in terms of the equations

yi(r, 1) = ll%@l + constraints . (14)

owXr, 1)
The ‘time’ dependence in egs. (14) is fictitious since in SD only the final result
is important. Here the time is used to label configurations in the {y,} space. The
{y:(z = 0)} is the initial trial state that has to be non-orthogonal to the final state.
The efficiency of SD is controled by the number of steps necessary to achieve
convergence. This can be large in low symmetry situations or even for a
quadratic canyon-like function [1 1].

This drawback can be eliminated by using the information on the matrix of
second derivatives 4 of the function f'to be minimized. However, the calculation
of the Hessian matrix 4 in the space of expansion coefficients of the wavefun-
ctions cannot be carried out explicitly. Thus we need a method that avoids the
explicit calculation of A. Such a possibility is provided by the Conjugate
Gradient method (CG) [11]. It defines an iterative minimization procedure

w?;.: ”ﬁ?v + N?v\q?vw n = Ou _, 2 ... 3 AHMV

where A is a scalar and 4 is a vector in multidimensional space. In the CG
method information on 4 is only used implicitly to define an optimal set of
directions 4™ in the sequence (15), where the scalar A™ is obtained by a
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o:m-@:jo:m_.o:,._ minimization along the line defined by A", The directions A"
are given by:

(n)
o 18, n=90
WNT;&uv\A::\N?]:q n = _u Nuw oo A~@v
with
g = —Vf(P®)
yo — S8 Mg+ Yy (17
A%Ai_%?vv

The m_..nmo:osw. A" are said to be conjugate and for a quadratic function the
following Conjugacy property is fulfilled

CHNAK™Y =0, Vi tm. (18)

This property guarantees that a succesive step is always an improvement on the
preceding ones.

We want to apply this standard theory to a constrained problem of the
w_ooquo structure [12]. It means that the forces of constraint have to be taken
Into account when the line minimizations are carried out. It is convenient to
Rﬁﬂzc_ﬁo the problem in terms of linearly independent but not orthonormal
orbitals {¢,}. The orthonormal orbitals {w;} are related to the {9} via _

N =
~
—
O
~—

vi=15, g,
J
with

Sy = <ol (20)
Wmm:m the overlap matrix. In terms of the {g;} the particle density n(r) is given
y:

occ
s occ occ

"0 = LviOwn = 3.5, %0808, 0 = Yoo, 90 (1)

il

and the functional E in €q. (2) to be minimized can be written as

E= M.,..m@lAe..
i

-~ WQMT\.V + JdrvVe(On(n +

Rﬁﬂvaﬁ\v + mcg—‘\; +I~. M NsN,\

+MT_\Q\ )
2 _S‘..Isk* Ns%.\_m\lm&_

(22)
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The constrained functional derivative of £ with respect Lo the {¢,} is given by
OF -1 —ig—1
“MrMAQ ms\AﬁleAs\_:_s\.vm\\: yw:. S\:Aﬁ.v. ANWV
%G.uﬂ 's v / I

Although in principle irrelevant, it is convenient to reorthonormalize {¢,} at
each step. Then egs. (23) reduces to

OF
opXr)

= N.NSNAWV 'M\Aeﬂ_m—s\vs\:ﬂ,ﬁv‘ AMA.V

Egs. (24) define the functional derivative g in the CG procedure in egs. (16,
17) and complete the necessary prerequisites. In order to keep things simpler, we
introduce in the numerical example below an additional approximation and in
the one-dimensional minimizations we proceed as in a non self-consistent case
and keep V" and p* constant as A varies.

We have performed a number of tests to study the efficiency of various
methods for electronic structure calculations. In particular, we compare our CG
based strategy with SD and with a more traditional and well-known Davidson
Iterative method (DI) [13]. Di is a prototype of methods where only a partial
diagonalization yielding only the lowest energy eigenstates is carried out. We use
the non-local norm-conserving pseudopotentials [14]. The exchange-correlation
effects are treated in the Local Density Approximation (LDA) [1]in the parame-
trization of ref. [15]. The Gram-Schmidt procedure was used to reorthonor-
malize the wavefunctions at each step.

As a representative result we consider here a calculation based on a periodic-
ally repeated simple cubic supercell with the lattice constant ¢ = 10.26 a.u. with
eight Silicon atoms that were randomly displaced from their perfect diamond
positions with a maximum amplitude of 0.2 a.u. The energy cutoff of 7 Ry was
used in a plane wave calculation. The Brillouin zone integral was approximated

by the k = Aw L wv point [16]. The initial trial state was obtained by filling the

> bl
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lowest energy states generated by a diagonalization of a small Hamiltonian
matrix constructed from a uniform valence density and an energy cutoff of 2 Ry.

The efficiency of different schemes measured in the number of steps necessary
to achieve convergence in the total energy is given in Tab. and F ig. 1. We remark
that for this system size the operations of the type H* y dominate and the
approximate cost of the CG step is equal to the DI step and twice the SD step.
In the limit of a very large system size the CG step is slightly more economical
than the DI step. We see that both DI and CG have a much faster rate of
convergence than SD but CG is significantly better than DI. The CG method
moreover does not require any convergence controlling parameter, such as the
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Table 1

'nseven significant figures is assumed. The timestep A = 0.16 in the D method. For the D/ method

SD DI CG
. 1
Si{ k={-. - -
CEE e e
0. Y T
-1. 7
+ SD
\nwvul IN - - OQ .
uL!..w o DI
S0
= -3} 1
-4. F .
-5. 4 !
0. 20. 40. 60.

No. of steps

Fig. 1 The rate of conver i
gence of the total energy F in SD. DI and CG met ih
system. E, stands for the ground-state energy. o methods fo the Sicon

w_Emwammm.\%rD in SD or the Bm.ﬁum parameter between input and output potentials
n D1 There is now much interest in large-scale DFT calculations in the LDA

approximation [17]. We think that our CG based strategy i i .
s a suitabl
for that type of calculations, ® il candidace

IV. ‘AB-INITIO’ MOLECULAR DYNAMICS AN APPLICATION TO
A NON-SIMPLE LIQUID METAL

In this section we will discuss the application of €gs. (9) to generate the finite
8:6@&88 dynamics of a non-simple liquid metal — liquid Silicon. In Sect. HI
an efficient approach to the standard electronic structure problem was dev-
<o~onnm. However, when ions are moving the dynamical optimization of elec-
tronic degrees of freedom (eqs. (92)) is always more efficient than the combina-

tion o.m €qs. (9b) with any electronic optimization based on first-order differential
e€quations,
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Unlike with semiconductors or insulators, there are a number of complica-
tions caused by the fact that we deal with a metal. So far there has been no
successful application of CP to a metallic system. Let us only briefly comment
on some of the difficulties.

In a metal there are degenerate states at the Fermi level. Those states should
be occupied by non-fixed fractional occupation numbers (at high temperature
we should also use the finite temperature version of DFT and minimize the
Mermin [18] rather than the KS functional). The special points sampling of the
BZ is not directly applicable here because the function to be sampled is discon-
tinuous across the Fermi surface. Finally, it is difficult to generate adiabatic
trajectories for a liquid metal. The absence of the gap in the densities of
electronic states favours the energy transfer from the ionic to the electronic
subsystem. Rather than looking here for a definite answer to these difficult and
unsolved problems we will introduce some additional approximations that will
be justified a posteriori by final results. .

L-Si is a suitable model system to be treated by CP. Because of its high
melting temperature (~ 1700 °K) [19), measurements on I-Si have been some-
what difficult. In this situation calculation may be of some predictive value. L-Si
being a non-simple liquid it has a highly anomalous both pair correlation
function g(r) and the static structure factor S(k). On melting the diamond
structure contracts by ~ 10 percent [20}, the coordination number increases
from N' =4 to an unusual value N’ ~ 6.4 [21, 22], giving rise to a partial
collapse of the tetrahedral network. This poses also the question regarding the
type of bonding in 1-Si. On melting 1-Si undergoes a semiconductor-metal
transition. These features are consequences of an extremly delicate nature of the
Si potential. Not surprisingly, any empirical additive pair potential fails. Em-
pirical potentials including three-body correlations may be successful [23] but
they can never describe all the Si phases.

We have performed a constant volume calculation employing egs. (9) [24].
The only modification was that a Nose’ thermostat [25] was applied to the ionic
subsystem, i.e. we carried out a constant temperature calculation in a canonical
ensemble. A periodically repeated cubic cell with @ = 19.816 a.u. containing 64
atoms was used. This corresponds to the equilibrium density of 1-Si [20]. The
average temperature was kept at 7 = 1800 °K, slightly above the melting tem-
perature. The same first-principle non-local norm-conserving pseudopotential
as in Sect. III was used [14]. The forces were calculated in the LDA precision
[15]. A plane wave representation of the wave functions was used with an energy
cutoff of 12Ry in the dual-space formalism [17]. The only point chosen in the
BZ sampling was (after a careful testing) the k = (0, 0, 0) point corresponding
to an infinite system limit. The occupation numbers of single-particle orbitals
were kept fixed. The fictitious electronic mass u was set to 300 a.u. In discretizing
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n%ﬁ“mmwwrwuﬁwm_hzﬂo m‘ﬁmv Ar=Tau (~1.7 x 101 s) was used. The ‘mass’ of the
thermostar EﬁM:s&m set to Q = 250000 a.u. The role played here by the Nose’
o oogvo:muﬁmn%:cwcm_ ~~ 1t constantly suplies energy to the ionic subsys-
dearens o ?wmaozm. Mq the energy that has been transferred to the electronic
m:%mom e o] ora osmmn:a::w,. to compensate .wOw deviations from the B(
n_mo:ommo ammammvm\ out ?Qmst optical phonon period a reoptimization of the
ey reedom. We have been m.c_n to follow the system for a total

=-U ps. We stress once more that this calculation is a fully first-princi-

M“w:omwwoowwﬂo%:ﬁ:&_ ._.nmczm.ﬁp 21, N.&. All the difficult features present in the
o] mmUmQ.%::o:-m_Bv_m liquid are in excellent agreement with experimental
frst pek ps \«vn we are mEo to recover the shoulder on the high-k side of the
o Sl (k) (often attributed :.V the presence of covalent bonding). The
i @: number calculated by Integrating g(r) up to the first minimum

= 6.8 in very good agreement with the experimental N/ — 6.4 21, 22].

&(r)
s(k)

0. 4. 8. 12. 0. 5. 10.
r{a.u.) k(1/a.u.)

Fig. 2 D ipti i i
g escription of short-range order in I-5i. a): the pair correlation function: b): the static

str ucture _LG—O_ X ull ::0: our OL_O—.:N:C: Qn—w__ﬂQnQO:QQ line- Xnnmv\ ﬁ::_kﬁ:o: €xpenment _NO. 21 _.
.
QOZNQ __:Awr:ﬂr_:n:_ wO.“—ZO:BW Xperiment HNN%

the bondangle distribution indicates that 1-Si is locally close to a simple
hexagonal structure. The analysis of the bonding properties confirms the
presence of a strong covalent bonding (I-Si is a "covalent metal’). According to
Phillips [26] the covalent bond can be represented by the Bond Charge
(BC) model. In BC the covalent bond is schematized by a point charge midway
between neighbouring atoms. The strength of BC is related to the dielectric
constant of the material. This feature is depicted by a snapshot of the electronic
density in I-Si in Fig. 3 where the presence of BC can be recognized. For
comparison the plot of the electronic charge density in the crystalline diamond
Si is also shown in the same Fig. The main difference is that in 1-Si the charge
is leaking out of the BC and fills up the spaces that are empty in the crystal.
More detailed studies of bonding, densities of states, dynamical and transport

properties are under way.

S
O =

©
S @
A\

Fig. 3a): The snapshot of the electronic charge density in I-Si projected on a plane going through
three atoms. b): The electronic charge density in the (1 10) direction in crystalline Si. Crosses indicate

the ionic positions.
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V. CONCLUSIONS

We started from posing the problem of an efficient calculation of many-body
forces within DFT in LDA approximation. We find the CP to be significantly
more convenient than the other approaches.

By analysing the MD equations for the one-particle orbitals we arrive at a
very effective approach to the standard electronic structure problem. We adap-
ted the well-known CG method to the constrained problem of band-structure,
The resulting method is very effective and the efficiency compares very well with
other methods, such as DI. The method can be applied to large-scale electronic
structure calculations.
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MMMM\%,HV am:w:m have been relatively disappointing [27]. We have an excellent
ption of short-range order in I-Si. Moreover, we can study also electronic

Properties, bonding etc., includin ies di .
| o g some properties diffi i
- experimentat, prop cult or impossible to

. ,m_:oo the Eoﬁroam.oczmmaa here enable to study realistic systems at a high
accuracy level they wilj play an important role in the future.
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HOBBLIA NTOAXOA K BBIYHMCJIEHMAM CHJIBI U CTAHAAPTHOI 30HHOI1
CTPYKTYPBI

Ipepnaraerca 0630p 06beAMHEHHOTC NOAXOZAa K TCOPHH (YHKLMOHANA NJIOTHOCTH M
MoJIeKyIspHol nuHamuku. Ha ocHoBe ypaBHewwmii MOJICKYAADHOH NMHAMMKH 33HOBO dop-
MyJHpYETCH CTaHIapTHAA NpobreMa 3NEKTPOHHOMN CTPYKTYPHI M BBORMTCH HOBBIN METOA. OC-
HOBAHHEIA HA HCTIOJTB3OBAHHE COTPSLKEHHOTO TpanueHTa. Hakonen, UCNIONB3YETCS OO aUHEHHRH
TOAXOA TIpH M3YYCHHH KODOTKOAEHCTBYIOHIETO NMOPAIKA M CBA3CH B METAJIHYCCKOM KHAKOM

CHAMKOHE HA OCHOBE NEPBLIX NPHHIHIIOB.
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