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ON THE EINSTEIN RELATION IN n-CHANNEL
INVERSION LAYERS ON TERNARY SEMICONDUCTORS

GHATAK, K. P.,"" GHOSHAL A.." Calcutta

An attempt is made to derive a generalized expression of the Einstein relation in
n-channel inversion layers on ternary semiconductors without any approximations of
weak or strong electric field limits. It is found, taking n-channel inversion layers on
Hg, _,Cd, Te as an example, that the same ratio decreases continuously with increas-
ing alloy composition and decreasing surface electric field, respectively, in the electric
quantum limit. In addition, the corresponding results for inversion layers on parabol-
ic semiconductors are also obtained from the expression derived.

L INTRODUCTION

In recent years, there has been considerable interest in studying the various
physical features of degenerate semiconductors having non-parabolic energy
bands and obeying Kane’s dispersion relation [, 2]. The band non-parabolicity
has been observed to influence many of these features resulting in special
properties of these semiconductors. It is well known [3, 4] that the performance
of semiconductor devices at the device terminals and the speed of operation of
modern switching semiconductor devices are significantly influenced by the
degree of carrier degeneracy present in these devices. The simplest method of
analysing semiconductor devices taking into account the degeneracy of the
bands is to use the Einstein relation to express the performance at the device
terminals and the switching speed in terms of a carrier concentration. Moreover,
the relation for the diffusivity-mobility ratio of the carriers in semiconductors
(hereafter referred to as DMR) is a very useful one since one can accurately
determine from this relation the diffusivity by knowing the mobility and vice-
versa. Furthermore, in recent years the connection of the DMR with the velocity
autocorrelation function [5), the connection of this ratio with the screening of
the carriers in semiconductors [6] and the various modifications of the Einstein
relation under different physical conditions have extensively been investigated
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[8-—15]. Nevertheless, it appears that, the generalized expression of the DMR iy -

n-channel inversion layers on ternary semiconductors has yet to be Emoﬂo:om:w

io.qx.na out without any approximations of weak or strong electric field limitg
This is very important since the various aspects of inversion layers on narrow

tors which have Kane-type energy bands would be interesting since the com
pound Hg, _ .Cd Te is a very important optoelectronic material because its
bandgap can be varied to over the entire spectral range from 0.8 um to ove
30um by adjusting the alloy composition [19]. Its use as an infrared detector
material has spurred a Hg, - «Cd, Te technology for the production of high.
mobility single crystals with specially prepared surface layers {20]. 1:3:9.30..ﬂ
the same material is ideally suited for narrow-gap subband physics, because the
relevant physical parameters are within easy experimental reach [20].

In what follows we shall first derive an expression of the surface electron
concentration per unit area in n-channel inversion layers on ternary semicons..

ductors without any approximations of weak or strong electric field limits, We, .

shall then derive the DMR with the proper use of the electron statistics. Besides, -
we shall investigate theoretically the effects of alloy composition and carrier :
degeneracy on the DMR, respectively, taking n-channel inversion layers on.:
Hg, _.Cd, Te as an example. y

IL. THEORETICAL BACKGROUND

The DMR of the electrons in inversion layers on semiconductors can be
expressed [8], in the electric quantum limit, as

.1y

where e is the electron charge, N, is the surface electron concentration per unit
area and g, and E, are the electric and electrochemical potentials, in the electric

quantum limit, respectively. as measured from the edge of the conduction band

on the surface. It appears then that the evaluation of the DMR using equation

(1) requires an expression of the 2D electron statistics which, in turn, is deter-

:.:noa by the corresponding density-of-states function. Incidentally, the disper-

sion relation of the 2D electrons in n-channel inversion layers on narrow-gap

semiconductors can be written [16] as

— 2 2 _
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where @, = Aae + M_v [ae(l + ae) — ay), a, = al’kl2m¥ a = 1/E,, E, is the
bandgap, i = h/2x, h is the Planck constant, k2 = k2 + k}, m¢ is the effective
electron mass at the edge of the conduction band, € is the electron energy
measured from the edge of the conduction band on the surface, Kn) =
A: + Mv anF(ah’[2m¥)'?, n (=0, 1, 2, ...) is the electric sub-band index, F,
(= eN,/e,) is the surface electric field applied normal to the surface and €, is the
permittivity of the semiconducting substrate material.

Using equation (2) the density-of-states function is given by

Mmax

Pe)=C MA.: + 2ee){l + D@y, a)]™' H(e - €,), (3)

as

M

H is the Heaviside step function and €, is the energy corresponding to the
bottom of the nth electric sub-band which can be obtained from equation (1) by
putting € = €, and g, = 0 and the other symbols are defined in Appendix 1.1.
Thus, combining equation (3) with the Fermi— Dirac occupation probability
factor, the surface electron concentration per unit area can be expressed as

Py x

N, = ckgT Ma?ﬁ;_ [ + 2a¢,) (n,) + 20k TE(n,)), )

where k, is the Boltzmann constant, T is the temperature and the other nota-
tions are defined in Appendix 1.1. Equation (4) is the generalized expression of
the electron statistics in n-channel inversion layers on Kane-type semiconduc-
tors. Incidentally the expressions for the surface concentration under the weak
and strong electric-field limits can respectively be expressed, using equation (4),
as

Mmax 2
>\.< e ﬁ\ﬂwﬂ M ﬁAg +w Qmavgﬁdav + N%hNJNwAw?vu—u AMV
n=10
and .
N, =ckpT } [(1 + 2ae,) F(n,) + 22k, TF(n,)], (6)
n=0

where the various notations are defined in subsections 1.2 and 1.3 of the

Appendix, respectively. A
It may be mentioned in this context that equation (6) has already been
derived elsewhere [15]. Thus using equations (4) and (1) we get

Do -1, )
u

Where the notations are defined in Appendix 1.1.
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The expressions for the DMR under the weak and strong electric-field limitg
can respectively be expressed using equation (7) as

2
A_ + - chv Fo(19) + 2ak, TE (1)

D k,T 3
uooe |+ 2 ae, | F ( -y . ¢
A 3 cv = §+A_ + va&;EAsV ,
and
D _ hﬁ (I + 2ae)) Fy(1) + 20k, TF (1) ; ©
noe L +2a0e) F (1) + (1 + @) 2ak,TF,(1,) _

where the various notations of equations (8) and (9) are defined in subsection
1.2and 1.3 of the Appendix respectively. It must be noted that equation (%) wa
derived for the first time A. N. Chakravarti et al. [15].

Besides, for a — 0 as for inversion layers on parabolic semiconductors equ
tions (5) and (8) get simplified into

o

N, =cksT Y, F(n,) (10)
n=90
and .
D k
— == E()/F_,(11o). amn
u 4 7
Finally, for 5, < 0, as for nondegenerate electron concentration, the equations -
(7). (8), (9) and (11) reduce to the conventional Einstein relation b =kyTle N.iw
they should. é .
HI. RESULTS AND DISCUSSION
Using equations (5) and (10) together with parameters [21—23]
E(x) =[—0.30 + 1.73x + 5.6 x 107%(1 — 2x) T 4 0.25x% eV (12)
mg(x) = E,(x)[0.1m,) (13)
E.(x) = [20.262 — (14.812x) + 5.279x3¢€; CS,

where € is the free space permittivity and taking F, = 3 x 10° V/m (such that the
conditions K(0) < 1 and a€, < | are fairly satisfied), we have obtained the alloy

composition dependence of the DMR in n-channel inversion layers on -

Hg, .Cd Te at 4.2 K under the weak electric field limit as shown in plot a of
Fig. 1, in which the same dependence is also plotted by using the generalized
expressions, i.e. by using equations (4) and (7) respectively, as shown by plot (b) |
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of the same figure for the purpose of comparison. The simplified limiting case
of the DMR in n-channel inversion layers on isotopic parabolic energy bands
by using equations (10) and (11) has been shown in plot ¢ so that the nature of
variation of the above ratio for complicated non-parabolic energy bands can be
assessed.
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32
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Fig. 1. Dependence of the DMR of the carriers
i in n-channel inversion layers on Hg, _ Cd, Te

on the alloy composition at 4.2 K under various
physical conditions.

Thus following the same procedure and taking the parameters as used in a
weak field case together with F = 6 x 108 V/m (such that the conditions K@) > 1
and ae, > 1 are fairly satisfied), we have determined the same dependence by
using the equations (6) and (9) under the strong field limit as shown in plot d
in Fig. 1, in which the same dependence is also plotted by using the generalized
expressions as shown by plot e. In Fig. 2, the surface electric field dependence
of the DMR has been shown for various cases for x = 0.26. It appears from the
figures that the DMR decreases with increasing alloy composition and decreas-
ing surface electric field, though the rates of variations are different in different
plots of figures 1 and 2 respectively.

Fig. 2. Dependence of the DMR of the carriers

in n-channel inversion layers on Hg, _,Cd Te

on the surface electric field at 4.2 K under va-
rious conditions.
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Besides, though the theoretical formulation 1s valid for the band Kane mode},
our present numerical computation is valid for x > 0.17 since for x < 0.17 the
band-gap becomes negative in Hg, _ . Cd, Te leading to the semi-metallic state:
It may be remarked that the theoretical studies covered in this paper are baseq
on the following two assumptions: ;
(1) The profile of the potential well at the oxide-semiconductor interface hag

been assumed to be triangular for the calculation of the energy cigenvalye
and,

(i1) in the theoretical calculations, the condition of the electric quantum limit
has been considered. Under this condition the Fermi level is below the lower
edge of the second electric subband so that only one subband is occupied by
the electrons [2].

The approximation of the potential well at the surface by a triangular well’
introduces some errors, as, for instance, the omission of the free charge contrj-
bution to the potential. This kind of approach is reasonable if there are only few'

charge carriers in the inversion layers but is responsible for an over estimation 4
of the splitting when the inversion carrier density exceeds that of the depletion’:
layer. But it is observed that the maximum error due to the triangular potential

well approximation is tolerable in a practical sense, as for the actual calculation
one needs a self-consistent solution which is very difficult for non-parabolic
energy bands without exhibiting a widely different qualitative behaviour. The
second assumption of the electric quantum limit is valid in the range of low
temperatures. Thus, whenever the condition of an electric quantum limit has-
been applied, the temperature has been assumed to be low enough so that the
above assumption becomes well grounded, because at low temperatures where’
the quantum effects become prominent one can assume that nearly all the

electrons are on the lowest electric subbands [24]. Though the hot-electron -
effect, the formation of band-tails and the effect of electron-electron interactions -

have not been considered in this simplified analysis, the basic qualitative feat-"

ures of this theoretical formulation will not alter significantly even after the -
necessary above modifications. It may also be noted that, since the m<m=mEn_;.ﬂ
noise power is directly proportional to the DMR as discussed elsewhere [25], the
experimental results on the thermal noise of degenerate semiconductors will -
provide an experimental check for the predictions of the above ratio and also, -

a technique for probing the band structure in degenerate semiconductors.

Finally, it may be stated that the basic purpose of the present paper is not solely -
to demonstrate the effect of the alloy composition on the DMR in n-channel

inversion layers on Kane-type semiconductors, but also to formulate the
generalized density-of-states function since the various transport phenomena
and the analytical formulation of different important physical parameters are.
based on the density-of-states function in such materials.
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APPENDIX

1.1. The symbols ¢, ¢(wqg. a)). ¥,. £(71,), X and Y are defined as follows:
¢ = m¥/nh’

o ag) = M_\sw - ??. + HVM k(T T .i

4
¥ =[n(G, + V1 + GHJIG,(1 + G})'A

o

Emy=@{+ D! ] Pl +exp(t— n)] "' de

X = kyTOH[(1 + 2aey) F_ (1) + 2ak, TE(11)]™"

Y = [2K(0)\/1 + GJ[aG,(1 + 2aGy)]™",
where
Q: = &QmaA— + Qmav. J: = QAE 34. Ahﬁ - m:y

§=(ckyT) "+ Z( E AN (€ AR 2af(m) — (kg T)™' x
x {2ak s TE(ne) — (1 + 2aey) F_ (1)},
Z =4k(0) G5 (1 + GGy ' — H(Go) ™' + %G1 + G,

Jj is the set of set numbers and ¢ is a dummy variable.
1.2. The symbols €, and @ for weak electric field limit are defined as follows:

13
Qm..2+QmL| Aam‘. + wv Uk?v_ﬁﬂo

>
and O =4y - 1),
here 23
e h.ﬂwzh_% |m§v;._, p,mm\_,.v .
2 3 2
Ay = (3/4) (me’fe,) (W 2m$)'?,
-1
A= TE@.:_ # 3?_ +w am._v Foo(n0) + NSQQ& H
2 4
A= [2m¥e (1 + amQV\uiNZH:_HA_ + 3 nmav F_ (o) + 3 aky TR (1)
and NH_H_ +Nnmelw acy(1 + aegy)(l +~:mov|_\‘_.

L.3. The symbols €, and ¢ for a high-electric field limit are defined as follows:

€, = (2a) ' [—1 + V1 + 8K(n)}
i o=@BB-1",
where B, = (24, Vay (1 + 2ae)

B, = .

2
my h

" - _H_ + 24 " W_S.M_S + 2aey) F (1) + 2ak, TR (no)] ™"

(1.1a)
(1.1b)
(1.1c)
(Lid)
(1.1e)
(110

(1.2a)

(1.2b)

(1.3a)
(1.3b)
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O COOTHOHIEHUSAX SNHINTEAHA B n-KAHAJIOBBIX UHBEPCUOHHbBIX
CJIOAIX HA TEPHAPHbIX HOJaYNPOBOAHMKAX

Hg, _ . Cd, Te nokasano, uto 1o xe OTHOUICHHE TUTABHO YMEHBLIAETCA NPH BO3PACTAHMHU CILIIABOBO- :
[0 COCTaBA M YMCHBUICHHH TOBEPXHOCTHOrO STekTputeckoro noas. Hapany ¢ stum Oy CHBL,
COOTBETCTBYIOIUME Pe3yAbTATH ANS HHBEPCHOHHLIX C10€B HA N2paboHyecKux NOJyNIPOBOAHHKAX:
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