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DIFFUSIONS AND NOISE ASSOCIATED TO OHZH->E~NHU

ORNSTEIN-UHLENBECK PROCESSES g

BEZAK, V."), Bratislava

The autor discusses one-dimensional diffusions (Brownian motions) x(¢) des-

cribed by the Langevin equations x — HF(x, t) = uf with general stationary zero- :

-centred Gaussian random forces S(t). In particular, he deals with the Langevin
equation corresponding to linear driving forces: F = g — Bx. In such a case, he calls
x(2) the “generalized Ornstein-Uhlenbeck processes” (since they are, in contrast with
the original Ornstein-Uhlenbeck process, non-Markovian) and explains how to con-
struct their probability densities P(x, t; x,) directly, without any use of the Fokker-
-Planck-type equations or without representing P by means of path integrals. (The
construction is possible owing to the gaussianity of the processes x(t) when F =
=a— fx). Foru= const, a = 0, B = const, the author calculates the spectral func-
tions S () to x(t) for two autocorrelation functions Wilul) of f(1): a. W(lul) ~
~ exp(—jul/t) and b. Wlul) ~ exp (—mu?/(2 SNV (In both cases 7, > 0.) The spectral
function S (w) is shown to equal a Lorentzian (centred at @ = 0) in case a., and to
exhibit a remarkable departure from the lorentzianity in case b. All the main results
of the author’s calculations are presented graphically. Attention is also paid to
possible multidimensional generalizations.

L INTRODUCTION

According to the modern theory of stochastic processes, diffusions can
essentially be studied in two ways which are — at least in principle, without
taking into account a computational (technical) aspect — tantamount. To recall
them, et us consider a one-dimensional diffusion process x(t), interpreting x(¢)
as instantaneous positions of an inertialess Brownian particle. (This is the same
as considering the Brownijan motion in the so-called overdamped regime.) The
first way of quantifying the Brownian motion is to formulate and slove the
Fokker-Planck equation for the density P(x, 1; x) of the probability that the
particle, after leaving the point Xo at a time ¢, = 0, will achieve the point x ata
time r > 0[1], [3]. The second way is to analyse the Ito equation for x(z) [2], [3]
(one of the simplest stochastic differential equations). (We might equally speak
of the Stratonovich equation. As we will not consider 3 state-dependent stochas-
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tic term in the 1t6 equation, the concurrent Stratonovich o@:w:os .,S: not look
differently). When dividing to 1t6 equation formally by the time e_ﬁn_d::m_ de,
we obtain what has been called the Langevin equation. If we mm.E: the presence
of some drift due to a deterministic force F(x, 1), we may write the Langevin
equation in its simplest form

yX() = Fx(0), 1) = f(1) (L)

with a positive constant y (meaning a friction coefficient). Yet we prefer to use
the mobility ¢ = 1/y (a non-negative constant) of the Brownian particle, so we

rewrite the Langevin equation into the (trivially modified) from

X(1) — pF(x(1), 1) = puf (0). (1.2)

Following Langevin, one has usually defined f(1) as a zero-centred Gaussian
random function of the white-noise type:

J@)» =0, (2
S (0)) = A1, — 1) (3

(with a constant A > 0). Then we can represent p as the path integral

‘4‘~ M \ . q
Rx,:xovn hﬂ.c @»‘Aﬁaxvﬂly Z.v. h dr[x(7) — pF(x(7), qv_-w Q)

with the diffusion coefficient

— b — 3
D=-—Ay""==-Au’>0 (%)
2 4 2
(cf. [4], [5]). When writing the “‘differential™ 2x(1) of the path Eﬁnmnmmoz
(functional integration), one must pay attention to the proper normalization
since p, being the probability density, has to satisfy the condition

._, eﬁq,ﬁ\évn_ A@V
for all values x, and for all times 7 > 0. We have m:ﬁoa:.nmm the symbol Zuﬁ.%
(see Appendix III in [5]) in order to emphasize that it is ‘not Em o_mmm_om_
(Riemann-Lebesgue) integral. Indeed, our :Zmnon?.oRmm integral ?m.v. .q 1S
much (if not entirely) synonymous with the stochastic integral Ow. the Ito type.
(Here it must be pointed out that the integral M.p.{ must not be interpreted in
the Stratonovich sense in expression (4); the Stratonovich integrals are good for
Feynman’s quantum-mechanical path integrals, but if they are to be used here,
formula (4) would have to be modified!) .

One can easily prove (cf. again [5]) that p, when defined by the path integral

149



(4), satisfies the diffusion equation with a drift term (i.e. the wowwo?v_mzo_n
equation) for ¢ > 0,
op_ O d

D=t o
o o ™ [F(x, 1) p], (7

and the initial condition

px, 0; x5) = 8(x — xp). ®)

(No boundaries will be taken into account in the present paper.)

Clearly, the white-noise property of the stationary zero-centred Gaussiag
force f(¢) is a condicio sine qua non if the path integral (4) is to be used. Without
the white-noise property of f(r), the function p(x, t; x,) would not satisfy the
Chapman-K olmogorov (Smoluchowski) equation

% QR_EOP~IN_M k_vbﬁa_u:wkovﬂhﬁ\ﬁh kov GV
for each intermediate time 1,(0 < ¢, < 1). But equation (9) is indispensable if
equation (7) and condition (8) are validated (equation (9) follows as their
corollary). Equation (9) defines the markovianity of the process x(¢). This
means that no memory effect is germane to the process x(z). To put it in another
way, we may take equation (9) as a definition of a semigroup and the path-in-
tegral representation (4) as its consequence. So the circle of reasoning pertaining
to the white-noise case of the Langevin force f{(r) has essentially become closed.

In the present paper, however, we pose another question: what if the Gaussian
random force f(r) is not endowed with the white-noise property? Is it then
possible to derive a differential equation (similar to equ. (7) though not ne-
cessarily identical with it) for the probability density p? Our answer is positive
for the case of the free diffusion (when F = 0). Moreover, we can derive the
probability density p(x, ¢: x,) for a whole class of the forces F(x ,t): for the linear
forces

F(x, 1) = a(t) — B(1) x, (10)

where a, f are independent of x.

What is certain a priori is the loss of the markovianity of (i.e. the occurrence,
may be implicit, of the memory effects in) x(¢) if the stationary zero-centred
Gaussian random function J() is defined by an autocorrelation function

Wi, t,)= Wilt, — o)) = W) f(1)) (11)

with a non-zero width. The width of the function W.(lu}) (with the definition
region (— xc, x) for u) determines a correlation time 7, > 0 of the process f(1).
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In practice one employs, as a rule, some standard autocorrelation function for
W;. We shall consider two such functions and so we define two cases:
"Case a:

A u

Wi(lul) = — SGAI_I._VW (12.a)

, 21, %

Case b:

: A ut
Wilu) = — nxvmlllmv. (12.b)

21 4%

They both have been defined with the same variance
b) 2 >
o} = P> == > 0. (13)
27

Clearly, the white-noise case (formula (3)) corresponds to the limit when - +0.
(A 1s fixed.)

There are not many examples of simply defined non-Markovian processes
x(2) yet. For this very reason, we believe that it is interesting — despite the
restrictive choice of the linearity of F (formula (10)) — to analyse the processes
x(7) defined by the autocorrelation functions (12.a), (12.b) explicitly and to
show to what extent they differ from their white-noise analogue. With this
intention we shall discuss first, in Section 11, free diffusions. Afterwards, in
Section III, we shall devote attention to the generalized Ornstein-Uhlenbeck
processes (taking the linear driving forces time-independent). Emphasis will be
put on the spectral theory of such processes. Finally, in Section IV, we will
suggest possibilities of further generalizations. In particular, we shall take the
coefficients a, B of F time-dependent and shall also mention of the multidimen-
sional version of the problem.

IL. FREE DIFFUSIONS WITH NON-WHITE-NOISE LANGEVIN FORCES

The simplest case of our concern is the free diffusion. Thena=f=0.1Ifris
fixed, we may consider

x(t) — xp = ub&is (14)

as a single zero-centred Gaussian random variable. Its variance is
[x(@) = x> = twbh%‘%z Wil = 1)). (15)
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It is natural to define the diffusion coefficient D by the integral

b"uwuw‘ du W(lul).

in the white-noise case) formula (16) implies formula (5).

We find it useful to introduce a new “‘chronometry” selectively for each m.
autocorrelation function W(lul): to implement this idea, we introduce 3

chronometric variable X requiring it to be an increasing function of ¢
such that y = y, =0 at I, = 0), by the relation

(1) = xJ'> = 2Dy.

If 7, > +0, then ¥ — 1, since relation (17) must not contradict the white-noise

(fort > 0,

an

result (when the r.h. side equals 2Dr). To have a dimensionless time variable we -

define the “chronometric ratio” r:
x=rt

(for each autocorrelation function WAlul) independently; r is an

(18)

increasing

function — such that 0 < r < 1 for t > 0 — of the dimensionless argument ¢/ S.
Formulae (15)—(18) give us the following expression demonstrating the func-

tional dependence of r on W,:

A
—. ' ' ’ " \lﬂ
=] | dede e — ) ) duwyul)
0 JO -

:&

If we insert the autocorrelation functions (12.a), (12.b) here, we obtain, anmuom.

tively, the functions

1
rEr@=1--(1-e%9,
¢

r=ry(é) Hwh dé& erf & = nnmmlﬂ\w 1 lmeAlmJ,

*n

where

e=Lso.

s
(erf £ denotes the error function

v

m%muAﬁ<$ﬁba=2u¢.iyv
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(202

(20.b) .

1

The values of r are indeed bounded between zero and unity; r = 0 for £ = 0 and
¢y — I for &£ - oo (Fig. 1).

3

T
4

-
N~
W -

0

Fig. 1. Dependence of the chronometric ratio r on the reduced time variable & =t/ for the free
diffusion in two cases (a. and b.) distinguished by the autocorrelation function W(W/ and W}). The
dashed straight lines correspond to the tangents to the curves r = rd{é)and r=r,(&) at £ -+ +0.

The probability density of the random variable x(t) — x4 is equal to the
conditional probability density p(x, ; x;) of the process x(f):

1 (x — x,)?
plx 15 xp) = g exp _HILQ (22)

(x>0).

Evidently, p fulfils — for each autocorrelation function W, of the process f(¢)
defined above — the equation
2
%_por 23)
oy ox?

Thus, y plays a role of a “proper diffusin time” of the non-Markovian diffusion
corresponding to W,. The function p(x, ¢; x,) is, of course, the fundamental
solution (i.e. Green’s function) to equation (23).

Equ. (23) indicates that we may speak of a Markovian process x{(X), regard-
less of the non-markovianity of the original process x(¢). This possibility is,
however, exceptional and does only concern the free-diffusion case. As we shall
soon show, if we take B # 0, we can neither use the concept of the “proper
diffusion time” as something replacing effectively the normal time ¢ (as for
B = 0) nor formulate a simple equation for p with coefficients independent of the
Initial point x,.
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Hl. GENERALIZED ORNSTEIN-UHLENBECK PROCESSES
(WITH NON-WHITE-NOISE LANGEVIN FORCES)

Now we intend to analyse the case when a, B are arbitrary constants,
Iofné? the constant @ can always be easily removed (from consideration): by
making the substitution x(t) = @(t) + pat, we obtain the Langevin equation for
.SQV in which @ is no more present. Thus, without loss of generality, we may
1gnore the constant ¢ and focus attention to the equation

x(1) + Bux(r) = pf(1). ﬁe.u

Note that x(7) need not correspond to a position of a particle at all (observable. -
mmw..ixr.ﬂrn aid of a microscope): it is usual to take the notion :wnoiimz,
motion™ in an abstract sence. (In our preceding paper [6], we have analysed 3
stochastic integrating circuit, or an RC-chain, with a stationary Gaussian
.B:aoE source voltage V(7) in the role of f(z); we have used Q(t) — the
Instantaneous electric charge on one of the capacitor electrodes — for x(¢), the
conductance 1/R for # and the reciprocal value 1/C of the capacitance for B)

_.m the zero-centred Gaussian random function f(r) is defined with the white-
-Roise autocorrelation function (3), then x(r) is nothing but the classical Orn-
stein-Uhlenbeck process [7]. Now we will show what happens with the Ornstein-
-Uhlenbeck process if J(#) is not of the white-noise type. In such a case, we speak
of the generalized Ornstein-Uhlenbeck processes.

I1L1. Probability densities
IIL1.1. The single probability density plx, 1 xy)
Owing to the linearity of equation (1.2) with F = — Bx, the expression

x(t) — xo exp(— Bur) = \%c dr’exp [fu(r — n)f(r) (25)

may be nonmamnma, for any fixed value 7 > 0, as a single zero-centred Gausian
random variable. Its variance is

x(0) = xoexp (= Bun)py = t%ﬁ%@ drde”exp [~ Bu(’ + (N W — ).

. 26
On a parallel with formula (19) we define the function -
' ' 7 " 7 " ’ \. .
w(z) Hhh de'de”exp[— Bu(r’ + )] Wjr’ — \:\% 9\:\\_:::. Gd
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Clearly, for 8 — +0 we obtain that y — ¥ (cf. definitions (18), (19)). Keeping
in mind the definition of the diffusion coefficient D by formula (16), we can write
at once the probability density

EA.X» \“ .Xov =

(It would be apposite to call v — on the analogy of the variable y of Section
I1— the “proper time”, were there not one reason against it: viz., the numerator
in the exponent of expression (28) involves very logically the normal time ¢, not
the variable y.)

For the correlation time 7, equal to zero, we obtain the original Ornstein-
-Uhlenbeck result:

Voult) = lim y(r) = L= XR(=26u0) (29)
r— +0 Nmt
Thus, our distribution function (28) is the most straightforward generalization
of the classical Ornstein-Uhlenbeck distribution function. (A brief summary of
the original Ornstein-Uhlenbeck theory is in §3.8.4 of the manual [31)
Now we will enter upon a discussion about whether there is a possibility to
derive a differential equation for the general probability density

P(x, 1) = _.mkeﬁcnv 15 Xo) Po(x) (30)

such that P(x, 0) = Py(x) (a function given in advance). If y(1) is different from
You(t), we do not expect that there may exist a purely differential equation for
p (given by expression (28)). In regard to the appearance of the memory in the
process x(1), we do rather expect that P(x ,¢) should obey an integro-differential
equation — an equation that, as far as we know, has not been derived yet. Of
course, the equation must be linear, i.e. valid for any prescribed initial function
Fy(x) in integral (30). (Only the normalization to unity, {dx Py(x) = 1, must be
required.) For the original Ornstein-Uhlenbeck case, we write:

Poylx, t) = b.akeﬁeeﬂk. 15 Xo) Py(x,), 31
0P, 0’P,y 0

Py ox? Bu @kA ou) (32)
Opoy ®~boc 0

=D — Bu— (x : 33

ot o’ Bu . Pou) (33)

Itis not at all clear how to write a memory-involving equation which would have
its counterpart in equation (32) in the Ornstein-Uhlenbeck limit: we mean an
equation valid for every function (30), not only for the function p(x, t; x,).
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) Namely, if the function P(x. 1; xy) is taken alone in case of the linear aaszm

torce F = — fx, we can easily write a differential equation for it (although not

of the Fokker-Planck type). For this purpose, it is suitable to use the mo__oimzm
new variables: .

X = x — xoexp(—Bur), (349)

T = y(1), (35)

where T) = y(1,) = 0 for fo = 0. The function p(x, 1; x,) = p(X, T: Xg) Ao,n_
formula (28)) satisfies simply the equation

op op e
L =p-£ 3
or ox? G8)
Hence, as .\
9 = W 9 =L AW — PBux, e P lwlv
0X ox dT y \&t ox
we obtain the equation
op op — g OP
*X_p — Bux, e P £ 37
or v o Bux, P (37

where v’ = dy/ds. Unfortunately, one of the coefficients at the differential
operators in equ. (37) involves x, and so the differential operator of the r.h. side
of equ. (37) is not applicable to the general function P(x, 1) given by integral
(30); that is why we must exclude equation (37) from further consideration.

Nevertheless, even though lacking a universal equation for P(x, r) in a form
of an evolution equation (a generalized Fokker-Planck equation), we may assert
that integral (30) with the kernel p(x, 1; x,) given by expression (28) does
represent the probability density P(x, 1) (for F = —px and any Py(x)) quite
exactly, whichever stationary Gaussian (zero-centred) random function f)is
used.

HI.L.2. The joint (multisite and multitime) probability density
E:A.d._‘ N_‘ i .d\:; N:... Hcv

Consider n events: event I, ..., event n. We define the event i by stipulating
that x; = x(¢) (1, > 0; i = 1, ..., n). On an “x versus 1" chart. we identify the
event i with the point 1, x;. In regard to the mapping (25), every two events,
1and j, are correlated. Besides, the joint probability density p, for all the events
L, ..., n depends on the initial position x, of the process x(). As the Gaussian
random variables x, — Xo €Xp (— But;) are zero-centred, we define the covariance
matrix W, with the elements
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W, \\v =[x, — Xgexp (— fut)] Tn\ - .«cnx_uﬂlm.t&.xv. (38)

The matrix W, is symmetric and independent of x, — cf. the r.h. side of relation
(25). Let X be the n-dimensional vector (written as a column) with the elements
X, — X€Xp(—ptt);i= 1, ..., n According to the general theory of the Gaussian
multivariate probability densities (cf. e.g. [3]) we may write

|
Pall, o 05 x0) = (27)"2(det s\_-ssnﬁlmxw s\,_.xv, G4

where W~' is the matrix inverse to W, ie. W' W = 1. det W is the deter-
minant to Wand X7 is the transposed vector (written as a row) to X,

When n = 2, the execution of the multiplications and summations required
by formula (39) is not awkward yet. So we obtain the probability density

S\NNR_N!N:\_NBXN.T :\:va (40)
2det W ’

pal, 2; x)) = %aa _\s,féA;
T

where
det W= W,,W,, — W}, > 0. 41)

(We have written for brevity W,= W.(, t).)
II.1.3. The autocorrelation function W, t,)

According to formula (39), the multivariate probability density is determined
uniquely by the matrix elements W;. Thus, the total information about the
statistical properties of the process x(t) can essentially be determined from the
sole function W,(1,, 1,) (¢, > 0, t, > 0). The function W.(t,, t,) is the autocorrela-
tion function of the process x(r). With respect to relation (25) we can write
explicity the relationship between W, and W}:

Wity &) = p’exp[—Pu(t, + :v;c &%o di”exp [Bu (1’ + )] WAl — 17)).
42)

(Check the symmetry: W1, t,) = W(1,, 1,).) The process x(1) is not stationary;
it becomes, however, stationary when the time ¢ is much longer than the

Correlation time 7, of the process f{(r). Therefore, we expect that
W, 1) - W (1, — 1) if 1y - 00,8 - “43)

whilst |, — 1,| < oo (asymptonic stationarity).
We intend to calculate the function W.(4,, t,) explicitly for case a. and case
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u.. Then, in paragraph 111.1.4, we shall calculate, utilizing the asymptotic func.
tion W, . the spectral density of the process x(¢) (for both cases).
In general, we write

Wt b) = W, (0t — L)) + AW, 1,). (449

For our further calculations, it is formally advantageous to use the parameters
a=fuzo0, (45)

b=1/1,>0. (46)

As it is seen from formula (42), we have to calculate the integral

9 g ) ]
th &%o de"expla(t’ + 1)) WAt — t)). 47)

This integral is invariant under the exchange ¢, — L, t, = 1, so it is sufficient
.8 perform the integration under the condition that 1, > t,. Then we have tg
integrate over the three regions on the (¢, ¢")-plane shown in Fig. 2: two triangle

ﬁ.#
8
G
— L . .
O Fig. 2. The integration region in the calculation
4 of the functions W,(1,, 1,).

R.mwozm ¢4 m:a 1) and one oblong region (/11). When integrating over the
triangle regions, we may make use of the new variables

u=1"—t v=1r 4",
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The region / and region I/ contribute to the integral (47) equally; for their
contribution /, + [,, = 21, we obtain the expression

5+\>\Hnmu‘ axA% ag.f_. QmancAQchx:;vu
Ado o0 o

5 " (48)
=—| dulexp(2at))exp(—au) — 1] W(ju)).
AaJo
The contribution of the region //I to the integral [ is
) n 13
Iy = l% &% de”expla(r’ + ("] W(¢" — 1), (49)
Aldo 0 ’
The autocorrelation function W(1,, 1,) is given by the expression
W1, ) = Dexp[—alt, + U, + I, + 1), (50)

where D is given by formula (5).
Case a.:

When using the function W} (definition (12.a)) in formulae (48), (49), we
obtain the results:

1
a—>b

q+muwaéna;|:| {1 - exp[~(b - a)t.]}

L texpQat)) — exp[—(b - a)i ),

b+a
= @lwwlmxeﬁ [(6 + a)r,] — L} {exp[~(b — a)1,] — exp[~ (b — a)1,]}.

The sum of these expressions, when multiplied by D exp[—a(t, + 1,)], gives the
function W7 = W¢ , + AW? for t, > t,. Yet the same result must be obtained
for ¢, < 1,. Thus, after some regrouping of the terms, we obtain, respectively, the
stationary and nonstationary part of the autocorrelation function we.

D b
Wt — o) == anﬁﬁlb_? — b)) +
a b+a
* b N Qﬁmxﬁﬁla_: — bf) —exp(—blt, — &_v_wu (51.a)
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@
b:\.“..?,abn m,‘ﬂ Q A v—anlS_ +aty) +exp(—ar, - bt,)] —
alb—a\b+a

o mﬁilﬁ?. + 0)] - nxﬁmlhﬁ_ + S:M. aw.mv
Case b.:

Using the function W} (definition (12.b)) we obtain the results:

I+ 1 = HmevAﬁVoxUANa:vT;AW\WbA: 4 2a vv _

a wbh* b’

o )] -(o).

1 a’
Iy = ’meA .qv (D, 4(t), 1)) — D, (1), 1,)],
mh*

2a
where
D, ,(1,, ) = exp (2ar;) —Hn—.wAQAD - I@hgvv — nl.AHNlbb -1 — lonvvg =
2 b’ 2 b’
- n%AKMA: - Wuvv + exp ANE_VQAKIN'@: - = Nnvv ,
b b’ 2 h?
i=1,2.

To obtain the fuction W' .. we must assemble those terms of the sum I? +
+ I+ 1, which, when multiplied by the factor D exp[—a(t, + 1,)], remain
potentially non-zero for Ly, = 00, t, » 00. The remaining terms will give the
function AW”. So we arrive at the result:

mh?

2 Vb

Sroaon?C&H~l onmxv.AZoS:&H m~23l~mo_.>.l 00.) To express the
function AW concisely, let us introduce the denotations ..

2
:\.ﬂ‘ h.,.A_N_ - Nu_v = mOXﬂAQ,v‘G—.ﬁOAIQ,vOX—UAIQ:_ - Nm_v, AM—GV

- 1 = 1
~HMQ_+~NI_:I-_V, HHMQ_+~N+_:IJC.

and use the function @, defined above. Then we can write:

AWty 1) = mﬁnxu AI&WV Txili: — hlyerfc A%A? WVV +

a h?
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+W¢&;cﬂwf.gsxmavgfnz;|=:<+::n;AKwWQw.
(52.b)

The white-noise (Ornstein-Uhlenbeck) limiting case:

If we let the parameter b tend to infinity in formulae (51), (52) (no matter
whether we take into account case a. or case b.), we reproduce the Ornstein-
-Uhlenbeck classical results:

_ﬁﬁ;réuwsﬁiilgy (53)

AWy, 1) = —Lexp[—a(t, + 1)), (54)
a

(Note that the function @, ,, in case b., falls to zero if b — 0. Hence, the
expressions in [ ] in formula (52.b) vanish for b — w0.)

Il1.1.4. The spectral density S (o)

The non-stationary part AW (1, 1) (cf. formulae (52.2), (52.b), (54)) is only
then of interest to experimentalists when there is a means of measuring some
ensemble behaviour of the processes x(r) (we mean an ensemble {x(1)} of the
stochastic functions x(r) described by the same stochastic equation — equ. (1.1)
or (1.2)) during some initial period whose length of duration Tis less than, say,
ten times the values a~'(a = Bu). If T is much longer than a~', then we may
neglect the initial non-stationarity of x(t); then we may identify the ensemble
average of any functional % ({x(r)}) with the value

T

F(xPy = tim L | drz (e,

T-x TJo
Moreover, then we can define the spectral density S (o) for the process x(t¢) by
the well-known (Wiener-Khinchin) formula

Sw) = ‘. duexp (—iou) W, ,(u)) (55)

(cf. [3]).

Our interest is to calculate S.(w) for both cases, a. and b., with the aim to
Show whether the respective spectral densities Si(w), Si(w) do, or do not
fesemble, the Ornstein-Uhlenbeck spectral density S%%(w).

161



Case a.;

After substituting expression (51.a) for W, . in formula (55) and carrying oyt
the integration, we obtain the function

@u

SH(w) =2D ;
(@ + &?)(b? + 0?)

(56.2)
Case b.:

As the r-dependence is expression (51.b) is simpler than in expression (5l.a),
the calculation of the spectral density S’(w) is quite easy and gives the result:

a a 1

, ‘
S¥w) =2D Axlv erfc Allv _— 56.b)
(@) P h? Jrb) @ + @ 58

Comparison with the white-noise (Ornstein-Uhlenbeck) case:

5Hrm:B:o::oNanono:.o_maos:Bo ﬂxa.m.monwn_\ﬂ\loovio obtain
the Ornstein-Uhlenbeck function

S
b

: 57)

a’+ w?

S%%w) =2D

To compare the spectral densities S%(w), S2(w) and S%%w) we take a as the
frequency unit, i.e. introduce the dimensionless frequency variable

pa®, | (59)
a

>mm:mmmo=m.oamo_‘5:_mn Ga.mv,am.vv,Eomvan:m_ao:m:mom MWASV,MWASV
depend on one dimensionless parameter, namely o

n=-, AM@V

which grows to infinity in the Ornstein-Uhlenbeck limiting case.
In Fig. 3, we have plotted the reduced spectral densities

o*(0) = 2L se(p) = _ 60.
O O ma T ey (00
o) = IQW S¥w) = exp Av_lv erfc Al_lvll_ll (60.b)
T ap T mn? a1+ ¢

as functions of the variable > 0 with some fixed values of the parameter 7.
Clearly, ali the curves corresponding to S¢(w) with different fixed values of 7
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; =7
0 T 2 3

Fig. 3. The reduced spectral densities 0,({) for case a. and case b.; ¢ is the reduced frequency,
o = fu¢. The numerals at the curves mean the values of the parameter 17 = (Buz)™". In both cases,
the upper curves (for 7 = oc) are identical, corresponding to the Ornstein-Uhlenbeck limiting case.

meet at one point due to the common maximum value S¥(0). Not so do behave
the curves corresponding to S?(w): they do not start (at ¢ = 0) from one point;
$2(0) is an increasing function of the parameter 5 with some asymptotic (ma-
ximum) value for 7 — 0. (Note, besides, that 52(0) » 0 for n > +0.)

Forget, for the moment, the restriction on the non-negative values of ¢
(Really, it may formally be advantageous to use exp(—iwt) in the Fourier
analysis and thus the negative values of ® will also necessarily be considered.)
Then formulae (60.a), (60.b) correspond to “‘spectral lines” centred at £ =0.
With this interpretation, we may say that the case b. gives “‘Lorentzian lines”.
(The same is true for the Ornstein-Uhlenbeck limiting case.)

To compare the shapes of the “lines” for various values of 5, we normalize
all the spectral densities to some common constant by defining the functions

1+ 17 1
n A+ + gy
1

shE) = vz (61.b)

s80) = (61.a)

These are drawn F ig. 4, in obvious correspondence with the curves of Fig. 3. All
the curves (b) of Fig. 3 have shrunk in Fig. 4 into one single curve (half of the
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Lorentzian with the unit “halfwidth™). The area below each of the curves ip
Fig. 4 above the semi-axis {>0is equal to /2. :

Ql

SRt

n :+w~v3+w~\:~v

02

1- Fig. 4. The reducec spectral “*half-lines” s =

o) =[(1 + n)/n] 07,(¢) for case a. The numerals at:

the curves have the same meaning as in Fig. 3. :

The curve with 5= oo corresponds to the

z Lorentzian. This, being validated for the Om:'!

stein-Uhlenbeck limiting case, does also oo..n.o.m., -
pond to all the curves s%({) of case b.

IV. CONCLUDING REMARKS

The basic idea of the present paper can be summarized as follows. If we
confine ourselves to the Langevin equations with driving forces F(x, ¢) which -
are linear in x and with stochastic forces f(r) which are Gaussian (but not ne- -
cessarily white-noise) random functions, then we can directly construct the,
corresponding conditional probability densities p(x, ¢; x,) (with £, = 0) without _
any need to use an equation of the Fokker-Planck type. (We must say quite -
plainly that it is not so easy to formulate an equation analogous to the Fokker-
-Planck equation if the white-noise property of f(¢) is abandoned.) .
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So far we have dealt with the simplest one-dimensional case defined by the
time-independent mobility g4 and the time-independent coefficients a, B (cf.
formula (10)). (It has been possible to take a = 0.) Now we will derive the
function p(x, £; x,) in the case when «q, B. u are arbitrary functions of the time
variable 1. We write, for ¢ > 0,

x(2) = ®(1) + &@1) (62)
and assume that

*0) =x,,  &(0)=0. (63)

The stochastic function x(¢) obeys the equation

X — pwla— fx) = uf (64)

(x(0) = xo). Owing to the linearity of relation (64), we may consider x(¢) as a
single Gaussian random variable for any fixed value ¢ > 0. The function %(r) is
deterministic; we define it as

x(1) = {x(1)>. (65)
Since f(r) is zero-centred, the function X(z) obeys the equation
%+ ppx = pa. (66)

The solution satisfying the first of conditions (63) is

¥(r) = .«%xuﬁlh dr’ (") E\L + Ah de” u(1") a(e”) nxnﬁlh%\tcxvmc\@.

(67)
The stochastic function &(r) obeys the equation E+ upt = uf. (68)
The solution satisfying the second of the conditions (63) is
&) = % a\\vt?\vxcdnxvﬁl% dr’ u(t) ENL. (69)
0 I

If ¢ is fixed, £(z) is a zero-centred Gaussian random variable whose variance
o(1) = (&) (70)

i$ a linear functional of the autocorrelation function Wit — o)) (formula (11)),
Namely:

ol(r) = x—..‘. dryde, () () Wi(lr, J_vmxv_HIA.—. + Aﬁvaitﬁzvmﬁ\vy.
o (71)
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The probability density p is then given by the expression

e A l L ».‘SJ ,
plx, 1 xy) = M\INJNQ!,S exp W 207() . ( N

New problems may arise when two or more Langevin equations are cops:
sidered simultaneolusly. For instance, if we include into consideration the
inertia of the Brownian particle, i.e. a mass m > 0, we obtain — still mo_.w
one-dimensional motion — the system of two equations: ..

mb + yv — F(x, t) = f(1). Qwv,

This is a linear system if F = o — Bx. We refrain from writing the corresponding
probability density p(x, v, 1; Xo, ) here. (For @ =0, 8= const, y = const, ¢
e.g. [8].)

In general, we may consider X(t) as a stochastic vector function of the time
variable 7 > 0 in an #-dimensional Euclidean space. We represent X(t) as g
column with elements x(t);i=1, .., n. Similarly, we define f(r) as a colum;
with elements £,(7), all taken as zero-centred Gaussian (possibly mutually corr
lated) random functions. The autocorrelation function (in the stationary ommnv.,

X—v=0,

of (1), i

WUt — o)) = <F(1) F (), (74)

is @ symmetric n x n matrix function. (Recall that ff" is a dyadic.) Instead of

equation (64), we write now the vector equation

X+pX="F+a, (75)

where @, f are two n x n matrices (which may be time-dependent). (We have -

incorporated g in the “forces” F= a — BX and f.) Writing
X(1) = X(1r) + =)

and assuming that

X0) =X, =0)=0,

X(t) = exp(—pr). X, +~‘, de'exp[f(t' — 1)]. a(1),
.. 0

Sl = % dr'exp (B’ — 1)]. F(1). (79)
0

(Note that now the location of X, a(t’) and (1) in expressions (78), (79) may

not be changed since we must respect the matrix multiplication which need not

be commutative.)
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Generally, for n > 1, we have to use the n x n matrix function
Wilt, 1) = (<Z(1) E"(1)) (80)

(instead of te function g () for n = 1). Explicitly:

Wi(t, 1) = h.ﬁ dr,dr,exp [B(r, — 0]. Wy, — ). exp[BT(1, — 7)}. (81)

The probability density p is given by the expression

1
(27)"?|det Wy(s, 1)|"?

p(X; 15 X)) = nxnﬂlw_kﬂ - X"(1)].

W D X~ NS_M, (82)

where Wi (1, 1) is the matrix inverse to Wi (1, 1) (with fixed 7).

If B were time-dependent, we could still derive X(¢), Z(r) as functionals of
a(r), B(1) (in analogy to expressions (67), (68) valid for n = 1), but only by
employing (for n > I) one rather discomforting element of the theory: the time
ordering operation. (We mean the time ordering as it was introduced by
Dyson in the quantum field theory.) We desist from commenting further on
this issue.

Our final remark concerns generalized Langevin equations which are sto-
chastic integro-differential equations. To exemplify such an equation we take

=/ and write

X —1I{x}) = 1. (83)

We assume that /({x}) is a linear functional of x(7). For example,
I({x) = .‘ dr' K(t — 1"y x(¢'). (84)
0

(The kernel K(u) must be some reasonable function such that K(u) — 0 if
U — oo. Naturally, the linear functional I({x}) could eventually be defined in a
more general form, too.) If the kernel K is distinct from the Dirac delta function,
the presence of the functional I({x}) itself manifests the non-markovianity of the
Process x(r), regardless of whether f(r) has, or has not, the white-noise property.
(As above, we do not require the white-noise property of J(1).) Particularly,
When we insert integral (84) into equation (83) and define (1) as stationary
(random function), we may calculate the spectral density S (w) of the process
X(?). (The process becomes stationary when ¢ - oc.) Then we may inquire, say,
about the influence of various memory kernels K upon the spectral density
S(w); or we may question how much the shape of S (@) may deform from the
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Lorentzian when a delay time (characterizing the kernel K) varies from zero tq
some large enough value — naturally, we should obtain a class of curves on the
“S, versus @ chart resembling those shown in Fig. 4 although parametrizeq
otherwise.

Of course, we could equally discuss the generalized Langevin equation pro.
blem for n > 1, i.e. for vector processes X(r).

Problems with generalized Langevin equations emerge (and have already
been analysed to a large extent in literature) in the theory of superionic conduc:
tors or, more generally, in the theory of the self-diffusion in crystals respecting
atomic (or molecular) interactions. Here, however, one new complicating point
must be embodied in the theory: the presence of some periodic force F,, (due
to the crystalline arrangement of the atoms), in addition to the functional I({x}),
in the generallized Langevin equations (cf., e.g., [9), [10]).

We are aware that the confinement to the linearity of the driving forces
F — or, in general, the linearity of the functionals I({x}) — is a drawback
because of which various interesting applications are excluded from our range
of view. Yet we do believe that the exact solvability of the problems tied to the
linear stochastic equations, such as equation (83), is a doubtless advantage
which should be utilized as far as possible. When one solves analytically linear
problems in an exact way, one prepares, in fact, conditions under which even-
tually more demanding theories of cognate non-linear problems can be formed.
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ANGOYIUU U IIYM CBA3BAHHBIE C OBOBWEHHBIMA NPOUECCAMM
OPHUWITEAHA-YJEHBEKA

M3yuebi oiHOMepHbic nddy3nu (OPOyHOBCKUE NBUKEHUSA) ONUCHIBAEMBIE YpaBHEHUAMM JlaH-
xeBeHa X — ufF(x, t) = pf c obMUMIH FayCCOBCKUMY CAYHAHHBIMM CHAAMME f(1) A:az.:.vsvo.wm::r_%:
B HYJIE) B Clyuae JMHCHHBIX AeHCTBYtoumx cua F = g — fx. ABTOp Ha3bIBAET TAKHE NPOUECCHE
«0000ueHHbIMU Tipoueccamu OpHruiTeiHa-Y neHbexa» (KOTOphie — B OT/IHMHE K NOJLTUHHOMY
OVY-npoueccy - HEMAPKOBCKHUE). ABTOP OOBACHAET KaK KOHCTPYHPOBATH NIOTHOCTH wn«uoﬂmon.uqs
plx, 1: Xg) Ans 0606wenHbx OY-npoueccos NpaMo 6e3 NPUMEHEHHS TAKUX KOHUENIMHA KAK ypaB-
nenre Poxkkepa-Tnanka naK GYHKUMOHALHBIC HHTErPANb N0 TpackTopusM. (KoHCTpykuus Bo3-
MOXHA M3-34 FayCCOBOTO XapPAaKTePa NpoueccoB x{f), eciiu £ = a — fx.) B cayuae, koraa p = const,
a =0, B = const., aBTOp HCHHCIIAET CNEKTPANBHYIO IOTHOCTD S, (@) wam x(1) n36Gupas hwn%w..dx%-
ppeasuuonnbie dynkunn Wilul) nas f(1): a. Wilul) ~ exp (—lul/), b. Wilul) ~ exp( la:. 127)).
(B 06oux cnyuasx 7, > 0.) ABTOp NOKA3BIBAET, YTO CMIEKTPANbHAR IIOTHOCTD S, (@) TMRA NOPEH-
1eBOoA TMHHK (LEHTPHPOBAHHOM B @ = 0) B ciy4ae a., HO YTO B Cliydae b. MMEIOTCA 3HAYUTEAbLHBIE
OTKJIOHEHHS OT JIOPEHLCBOI opmbl. Bee cBOH rnasHbIC pe3ynbTaThl NPEACTABIINET ABTOP rpadu-
yeckd. BHUMaHNE MPEAOCTABASETCA TAKXKE MHOTOMEPHBIM 06061LIEHHIM.
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