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THE STEEPEST-DESCENT-METHOD CALCULATION
OF GROUND AND EXCITED STATE ENERGIES
IN 2+1 QED ON A ONE-PLAQUETTE LATTICE

HORVATH 1.,') Bratislava

The steepest descent method is used for the determination of the ground and a few
excited states of the compact QED on a lattice with a single plaquette in 2 + |
dimensions. The results are very easy to obtain and very accurate in both cases of the
ground state and the excited ones. The realization of the method we have used in
calculated allows to investigate the nonperturbative effects of the theory.

I. INTRODUCTION

In recent papers [1], [2] a new variational method for the determination of the
ground and the excited states of a hamiltonian has been proposed. The purpose
of this paper is to show how this so-called steepest descent method (SDM) works
in the case of the simple U(1) lattice theory with a single plaquette.

The method is based on the use of two evolution equations for the systematic
improvements of the variational states.

According to the Ritz variational principle the expectation value of the
hamiltonian A
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reaches its minimum in the true ground state. The gradient of E(%¥) in the
Hilbert space is given by the vector
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In order to reach the minimum of E('P) we have to proceed just in the opposite
direction, because this is the direction of the steepest descent of E(¥). To
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describe this movement, the evolution parameter r is introduced. Then the -

equation nnmnlcm:m the motion of the state along the steepest descent of E(p
can be written in the form

3| (1)) I ﬁ 5 (HA j
L < Y(1)).
~ D T [¥(1)) (3)
Eq. (3) oosmm.?nm .Eo norm of the state vector during the time evolution. Thus
for a normalized initial state {#(0)] ¥(0)> = 1 it can be simplified to
A _ o e
Py [H — {HAIY ) ¥(2)) . C))

The evolution according to this steepest descent equation leads to the ground

state under the assumption that the initial state has a nonzero overlap with the
true ground state,

The equation am.mna_um:m the motion of the state vector to a general stationary
mR:.n can be obtained in a similar way. The extremalized functional is the
variance of the hamiltonian

D(w) < SHANY _ Cwawy
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EEn.r is :o:-qnmm:{n and vanishes only if |¥) is a stationary state of A. The
gradient of this quantity in the Hilbert space is given by
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The corresponding steepest descent evolution equation conserves the norm .

again and for a normalized initial state we have
(7))
or
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oxo_.aa ones. This gives us some hope that the method could be useful in more
realistic situations.
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In Sect. I1. we review the formulation of QED in 2 + 1 dimensions on a single
plaquette. Sect. 111 is devoted to the description of the strategy we have used
in the calculations. Our numerical results are discussed there too. The last

section contains the conclusions.
1. FORMULATION OF QED IN 2+ 1 DIMENSIONS ON A SINGLE PLAQUETTE

We will use the gauge in which the scalar potential is identically equal to zero.
In two dimensions the vector potential has two components A = (A,, 4)),
which will be the canonical variables. The conjugated momenta are the com-
ponents of the electric field E = (E,, E,) and the hamiltonian of the theory is

A= W?fmw + E] + B?) @)
where
B=0,4,-0,4, : ©

is the magnetic field, which has only one component in two dimensions. The
canonical equal-time commutation relations have the form

(4(x), E(y)] = —i58,6%(x — y). | (10)
In the absence of charges the conjugated momenta have to satisfy the Gauss law
0, E +0,E =0. an

To give a discrete formulation of this theory on a simple plaquette we shall
use here the compact version of QED on a lattice as it is described in Ref. [3].
This version is constructed in correspondence with the lattice formulation of

non-Abelian theories.

©)  AyEy U1
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Fig. 1. One plaquette universe.

Our universe will be the lattice which consists of four sites placed in the
Corners of the square (see Fig. 1.). The spacing of the lattice is a and the
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wm:n«:mom:w conjugated fields A, Fare placed on the links of the lattice as showy,
in Fig. 1. In correspondence with (9) B is defined as the lattice cur]

L. :
mHlTA__cl\Ao.ol
a

and is located at the plaquette centre.

The hamiltonian for the compact QED on a single plaquette has the form 3]
T __ 1 2 xy2 32 v g
H = e TMSV (B + (i) + (Eg)? + —— [1- nommawwL, 13

where g is the coupling constant. In the g4 - 0 limit this hamiltonian cor.
responds to the continuum case of Eq. (8). The canonical commutators on the

plaquette are

47, E{) = —ia~2 5 5 gt (14 4
All the variables can be made dimensionless by being divided with the appro-
priate power of 4. If we put a to be equal to unity and canonically rescale
A Ag! B - Bg-! E - Eg, A_&M..HN.
then we can write the final form of the equations we will use: ;
T %N X \2 D vy2 .
H= 3 WEY + (B + (B3 + BT+ L 1 = cos gy (16)
g
B=djy— Ay — a5 + a5 an
(45, Bl = —i 5% 5% g1, a9 |
The Gauss law implies: |
w+ Egy =0 Ep — Ejy =
Es+ Ely =0 E - Ey=0 )

We can satisty the commutation relations (18) by representing the com-
ponents of H.:o vector potential by the angular variable @, and the components .
of the electric field by the operators 10/0¢;,j = 1, 2, 3, 4. These operators act on

a space quadratically integrable functions
1
472

where k, =0, +1, +2, ...

.m\x__@_:_: =—=expilk, o + k,, +k;0, + kol (20)
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Ad + Ag). (12)

2
ga'

with the basis

If we relate the angular variables to the vector potential components in the
following way

An=¢  Al= ¢, 0=@ Ay=g, (02}
then the Gauss law leads to the conditions
k= 2= —ky = —k,. (22)
Thus in this representation, the eigenstates of our hamiltonian
x g2 & @ 1
H=-%3% 4 — [l —cos(¢) + ¢ — ¢ — g)] @3)
251097 g

can be investigated in the subspace with the basis

¥y = l_|~ exp (IK @), (24)
4rn

where @ =0, + 9, — 9, ~ @, K=0, +1, +2, ...

HI. THE STEEPEST DESCENT DETERMINATION OF THE STATIONARY STATES

The steepest descent Eqs. (4), (7) are rather complicated. They are integro-
differential equations with nonlinearities in their integral part. That is why we
are not able to solve them exactly. Instead of it we will use some discrete scheme
which corresponds to the continuum steepest descent evolution.

The steepest descent equation shows how to do the infinitesimal time steps
in the Hilbert space to reach the maximal descrement of the corresponding
functional (the mean value of the energy or the mean value of the variance of
the energy). To reproduce this in a discrete way we use the following scheme:

We start from some normalized initial state |¥>. As the first step we con-
struct the gradient |7 of the corresponding functional and normalize it by

[z
x> =—=—, 25
<Hi>'"
in the second step we construct the state
|'¥e) = cosal ¥) — sinaly,) (26)

which is normalized automatically, and determine the value of a for which the
€xtremalized functional (E('¥,) or D( ¥,)) reaches the minimum.

Using this iterative procedure we shall obtain the sequence of states in which
each state improves the previous one in the optimal way.
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The value of the variance, which we will reach by executing the iterative
cycles, is the measure of non-accuracy of the stationary state we have found,
This allows us to regulate the accuracy of the calculations and provides a very
useful criterion for stopping the iterative procedure. This is true also in the cage
of energy minimization, of course, because D is minimized simultaneously.

The Hilbert space, which will be used for solving our theory in this way, wag
specified in Sect. IL. It is generated by the set of orthonormal states (24). Each
vector of this space is characterized by the coefficients (cx) in decomposition *

x

F=(Cogy o €y Cor €,y ) = y lnlﬂoxccksv 7
K=—w 471 e

where @ = ¢, + ¢, — @3 — @, is the angular variable; K =0, +1, 2,

In practice we have to restrict ourselves to the finite dimensional subspace of
the Hilbert space, Le., to work with the finite number of the nonzero com-
ponents of a given vector. One can notice, however, that if the initial vector | ¥).
has 2K + | nonzero components (c_y, ..., cx), then the vector H\¥) will have
2K + 3 components (c_,_ 1s--+»Cx +1). It means that the gradient of E( %) and’
D(¥) will have 2K + 3 and 2K + 5 components respectively. In this way the
dimensionality of the subspace would increase in each iterative cycle, which s -
non-appropriate. That is why we started the determination of the eigenstates on
the subspace with a lower dimensionality (about 20) and cut off the additional :
nonzero components. After a given accuracy of the stationary state was reached,
we have increased the dimensionality of the subspace and made the calculations .
more accurate. We have changed the dimensionality up to 40. N

For the minimization of E(¥,) and D(¥,) we have used the well-known -
“success-failure” one dimensional minimization method [4].

The results for the ground state are shown in Tab. 1. For a given value oﬁ.w.m ‘

we show the energy of the ground state, which was obtained by energy mini- -
mization (E;) and the same for the variance minimization (Ep). D, is the:
variance we have reached in the latter case.

The eigenvalue problem solved here is equivalent to the determination of the
eigenvalues of the Mathieu equation, which correspond to the solutions with the
period of 7 [5]. The results are known in the form of power series in the coupling
constant g = 1/g* [6]. We have used this series up to the 8th power to compare’,
the eigenvalues with our results (see the value of E in Tab. 1), but this is usable :
only for the weak coupling region (g 2 1)'). One can see that in this region there’.
is an extremely good agreement.

") That is why some of the places in our tables are free. 5
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Table |

Ground state energies. For a given value of g there is shown the energy obtained by energy

minimization (£,) and the same for variance minimization (Ep). Dy is the variance which was

reached in the latter casc. £ is the energy obtained (rom the power series for the eigenvalues of the
Mathieu equation.

g 0.1 0.5 1.0 3.0
E, . 0.99945 0.96766 0.77243 0.11076
Ep 0.96768 0.77547 0.11077
E 0.77286 0.11076
Dy 0.6x107* 0.7x107? 0.1x10°?

It is more remarkable, however, that the SDM provides the natural possi-
bility of an accuracy estimate, which is not dependent on the value of the
coupling constant. The rough estimate of this type is derived in the Appendix.
It has the form

B, + E |l
BE 0 + BB i)

where E, is the energy of the kth approximative stationary state we have found

|E, — E) ~ D, (28)
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E(g)
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Fig. 2. The g-dependence of the ground state energy of the system.
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Table 2

Excited state energies. For a given value of g are shown the energies of the first six excited stateg -

(NS — number of state). E, is the energy of the stationary state and D, is the value of variance we

have reached. £ is the energy obtained from the corresponding series for the eigenvalue of the
Mathieu equation.

NS ¢ 0.6 08 1.0 3.0
E, 2.75527 2.68744 2.95851 18.11105
2 E 2.68743 2.95851 18.11105
D, 0.1x10* 0.2x10* 0.1x10* 0.6x10°°
E, 4.24044 3.34200 3.18533 18.11139
3 E 3.18521 18.11139
D, 0.4x10°? 0.4x107* 0.7x10°* 0.4x10*
E, 5.86324 6.74213 9.01648 7211113
4 E 6.74215 9.01640 7211113
D, 03x10°* 0.6x10°° 0.6x 1073 0.5x10°°
E, 6.19843 6.75160 9.01691 7211113
5 E 6.75163 9.01691 72.11113
D, 09x10°* 0.2x107*4 03x10°* 0.1x107*
E, 9.41146 13.10979 19.00714 162.11112
6 E 13.10979 19.00714 16211112
D, 0.1x10"* 0.5x10°° 02x10°° 0.2x10°°
E, 9.41611 13.10979 19.00714 162.11112
7 E 13.10980 19.00714 162.11112
D, 0.3x10°* 0.3x10°¢ 0.2x10° 0.9x10°°

and D, is its variance; Em.z...\“ |E, — m._h E, is the energy of the kth true .

stationary state. The derivation of Eq. (28) is shown in the Appendix. Fo

& = 0.5 (which corresponds to q = 16), we have, for instance, [Ey — Ej) = 1075
and for g = 2 (¢ = 1/16) |Eg — Egl &~ 107*. The latter case corresponds to the.

order in which the values of Ej and E differ.

The dependence of the ground state energy on the coupling constant is shown
in Fig. 2.

The results for the excited states are given in Tab. 2. We have calculated the
first six excited state energies of the system on the same level of accuracy as the
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mao_:a state energies. In the weak coupling region the results are compared with
the eigenvalues of the Mathieu equation again. The corresponding values differ
in the order indicated by Eq. (28).

Several problems arise in using the SDM to calculate the excited state. The
first of them is how to identify the state we have found by variance minimiza-
tion. By executing the iterative cycles we get some state with the value of
variance which is near to zero, but from this point of view all the stationary
states are equivalent. The second problem is connected with the previous one.
According to our opinion the variance minima are very “narrow” if we compare
them with the variance minimum of the ground state. That is why the variance
minimization practically always leads to the ground state. One has to have some
preliminary rough information about the structure of the excited states to reach
its variance minima.

In this special case these problems can be easily solved by using the following
strategy:

From Eq. (23) it can be seen immediately that in the g — oo limit our basis
functions correspond to the eigenfunctions of the hamiltonian. This means that
if we start our calculations with the large value of g, we will know the structure
of a given excited state and will be able to identify it. The stationary state will
be obtained very quickly and we will use it as an initial variational state for the
hamiltonian with g somewhat smaller than in the previous case. If we suppose
the continuous dependence of £(g) for a given stationary state, then it is natural

E(g)

Fig. 3. The g-dependence of the first six excited states of the system,
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to expect that this variational state will be very “near” to the true mﬂmnost_
state and the identification will be conserved. By the repetitive usage of such:

quasi-continuum shift in & we can investigate the spectrum in the large range o
<m_:om.0m &, including the strong coupling region.

symmetry of the hamiltonian. It can be seen immediately that the hamiltonjay
(23) is invariant with respect to the transformation @ - — @, This means that
E.m eigenfunctions, corresponding to a given value of energy, can be symme:
trized and antisymmetrized. As a consequence we have in the g — oo limit théa
double degeneracy of the excited states, That is why we have shifted so thé
mwiBnao state as the antisymmetric one to the strong coupling region. In thig
region the degeneracy is removed (see Fig. 3.).

- IV. CONCLUSIONS

excited states were determined and identified for various values of the coupling”;
constant. The results are very accurate and very easy to obtain even for the'
excited states. g

The realization of the method we have used is very effective and gives the -
change to calculate the nonperturbative effects of the theory. We hope thaf

:wnm:%a noc_acocmoam_momnaoannm:m:.n cases, including the quantum theory::
of fields. i
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APPENDIX

We shall derive here the estimate (28).

Let us suppose that we have found the approximative state | ¥, to the kth
true MS.:o:mQ state. It means that the value of variance D, is small in this state.
We are interested in the order of accuracy for the corresponding eigenenergy m.(».;.,

The variance of the hamiltonian can be written in the form =

© x 2
D=3 _p._Nm,.FAM _%mv ,

i=1 i=1

146 _$

@)

where E; are the eigenenergies of the hamiltonian and ¢; are the components of
_.N.v in the eigenfunction representation. As [¥,) approximates the kth statio-
nary state, the relations

el <led,  i#k (30)

are satisfied. -
To get the rough estimate of the accuracy of E, we shall suppose that ¢, _,,

¢;» Ci +1 are the only nonzero components of [%,>. Due to Eq. (30) the terms
_QND._N fori,j=k — 1, k + 1 can be neglected in (29), which leads to

Dy~ e llee _ \PBE «_ ) + e PO Ee, 1) (31)
where 6 E; ; = |E, — EJ. ‘
If we put in (31) approximatively |c,]* =~ 1, |, _,| = lc,_,| = ¢, then we will
obtain ,
D,
cx L PP (32)
BE_1 ) +(OE. 1.0
Using this expression we shall find immediately
o~ k+1 5 ~ m _ IT m _
E,—El~| Y |cI’E — E|=~ D, Byt By (33)

BE,_ )V +(BE ;,\)

i=k—1

The substitution of the approximative eigenenergies £, into the right-hand side
of Eq. (33) reproduces the result (28).
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