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THE HARMONIC CONTRIBUTIONS TO THE ELECTRON
VELOCITY DISTRIBUTION AND MACROSCOPIC
QUANTITIES IN THE UNIFORM H, rf PLASMAY

VOIGT H.-D.” WILHELM J.,» WINKLER R..» Greifswald

The paper deals with the analysis of the harmonic contributions to the velocity
distribution and relevant macroscopic quantities such as mean electron energy,
particle current density and power input for an rf bulk plasma in H, over a wide range
of the rf field frequency. The solution approach is based on the Fourier expansion
technique applied to the non-stationary electron Boltzmann equation. A physical
interpretation of the field frequency dependence of the harmonic contributions to the
different quantities became possible by introducing lumped dissipation frequencies.
both for energy and impulse.

L INTRODUCTION

Recently comprehensive investigations of the periodic behaviour of the
electron velocity distribution function and relevant macroscopic quantitites in
the uniform bulk region of established rf discharges of inert and molecular gases
[1-—3] could be performed for not too high field frequency values. Especially it
was found that at low rf field frequencies generally large modulation of the
isotropic part of the velocity distribution function and of macroscopic quan-
tities, as e.g. mean electron energy and mean collision frequencies, occur. When
we increase the field frequency up to a critical frequency region, namely that
covered by the lumped energy dissipation frequency v./p, (which strongly
depends on the kind of gas), a drastic reduction of this modulation is obtained.
With further field frequency increase the just mentioned quantities tend to
become time independent. However, when approaching v,/p,, the anisotropic
part of the velocity distribution and the relevant macroscopic quantities, i.e. the
particle current density of the electrons and the power input from the rf field,
remain still periodic functions with large modulation. It could be further found

" Contribution presented at the 7th Symposium on Elementary Processes and Chemical Reac-
tions in Low Temperature Plasma, STARA TURA-DUBNIK, June 13—17. 1988

%) Zentralinstitut fiir Elektronenphysik, AdW, Bereich Gasentladungsphysik, Robert-Blum-
-Str. 8—10, 2200 GREIFSWALD, GDR

97



for an rf discharge in the inert gas Ne [2] that a reduction of the modulation of
the latter quantities occurs only if the field frequency increases finally up to
another critical frequency region, namely that covered by the lumped impulse
dissipation frequency Vi/Po in the gas considered.

The special aim of this paper is to investigate the different harmonic contribu-
tions to the isotropic and anisotropic distribution and to relevant macroscopic
quantities in a wide field frequency range for an rf plasma in molecular hydrogen
by using an appropriate solution technique for the non-stationary Boltzmann
equation. These investigations are based upon the Fourier series expansions
with respect to the time for both distribution parts in the Boltzmann equation
and permit directly to determine the mentioned harmonic contributions up to
very high field frequencies for a molecular gas. The field frequency dependence
of the harmonic contributions to the different quantities obtained are mi-

crophysically interpreted by using the concept of energy and impulse dissipation
frequency.

IL. MAIN ASPECTS OF THE SOLUTION TECHNIQUE

The starting point is the non-stationary, spatially uniform Boltzmann equa-
tion for the electron velocity distribution function F (v, 1)
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in the rf field
E=Ee, E(t)=E,cos (wr). )

C¢and C}" are the collision integrals for elastic collisions and for several electron
particle numbers conservative inelastic collision processes.

The Legendre polynomial expansion of F(v, t) in (1) gives in the Lorentz
approximation finally two partial differential equations for the isotropic part
S(U, 1) and for the first contribution f,(U, 1) to the anisotropic part of the
velocity distribution, where the electron energy U in eV and a normalized time
scale 7 can be introduced according to e,U = mv%?2 and 7 = Pot [2]. Further-
more, the same expansion yields the representation
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of the mean electron energy U, of the electron particle current ao:m:u\‘ Je m:a‘ of
the mean power input U’ from the rf field. 7, denotes the electron aw:m:w E.r._nr
is time independent due to the consideration of only conservative collision

rocesses. . . S
P In the established rf plasma the isotropic and anisotropic distribution can be

given the Fourier series exparsion

fU D=3 E@)e™, F (U)=FXU), N

FU D=3 FAU)E™, F(U)=E*U). @=alp.

Substitution of (4) into the mentioned partial differential equation system for f
and f, yields
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where v, is the collision frequency for the impulse transfer in elastic collisions,

v/ the total collision frequency and U}" the oo:nmﬁozn.zsm energy loss for the ._Q:
inelastic collision process. For the isotropic distribution the natural normaliza-

tion %8 U'f(U, 1)dU =1 can be used. Its Fourier expansion leads to the
(]

conditions

@X

Wq_ﬁsaan % UPFUYU=0, n=1,23,.. (6
! |

0

for the Fourier coefficients of f(U, ). A detailed observation o.m the oo:m::m
in (5), particulary the possibility of the elimination of the Fourier coefficients
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‘LR by using the second equation of (5), and the consideration of the
normalization conditions (6) show that (5) can be separated into two indepen-
dent equation systems, one for the k., F{', Ky, F{, ... and a further one for F,
F.FAF, ... Particularly the zero normalization ofall K, F, ... according to
(6) leads to the conclusion that the second system has only the trivial solution
and can thus be neglected. Therefore, the problem to determine the harmonic
contributions of the isotropic and the anisotropic distribution is reduced to the
first system for the functions Fy, F{, F, F{, .... A natural truncation of this
hierarchy is obtained when considering the equations of (5) for even n’s up to
a certain even 2/, i.e. the €quations for n = 0, 2, 4, ..., 2/ and neglecting in the
second equation of (5) the term E ,forn=2]

Thus the Fourier series expansion of the isotropic and anisotropic distribution

for the non-trivial solution of the truncated system (5) can be written in the
reduced form

JW. =¥ EU)e™, F,(U)= %(U),

n=—
1+

LU, D= % Ff (U)yeen-na F2a,(U) = F_ (V). (7

n= -~

From this complex representation follows the real representation

/
SW, ) =K+ Y 2F,(U)] cos 2nai + P(0)),

n=1|
141

JaU, 0 = ¥ 2AF  (U)| cos ((2n — Dot + o (U)), (8)

n=1

where |F, |, |Ff _ /] and ¢, o1, _, denote the magnitude and the phase of the
complex harmonics ¥, and Fi_..

The corresponding Fourier expansions of the macroscopic quantities given in
(3) read then
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From these complex representations similar real representations as given in (8)
for both distribution parts can be obtained. For the solution of the truncated
system (5) it is convenient to replace the Fourier coefficients Re(F{)yand F} |,
n =2 according to G,, = Ffi | + F3 ., by the functions G,,. The resulting
system of ordinary differential equations (with additional difference terms) for
the functions £, and G,, then contains 4/ + 2 real function components and is
weakly singular at small energies with the singular point U = 0, strongly sin-
gular, however, for large energies with the singular point U = co. Thereby
appropriate series expansions have been assumed for the collision cross sections
involved in the different collision frequencies v, and v/ near the singular points
and immediately above the thresholds of the inelastic collision processes, respec-
tively. Because of the different character of the singularities of the just men-
tioned system separate considerations of the structure of its general solution are
necessary in the region of small and large energies, respectively. It was found
that the general solution at small as well as that at large energies contains 2/ + |
non-singular and 2/ + [ singular fundamental solutions. The desired, i.e. physic-
ally relevant solution has to be sought within the non-singular part of the
general solution (NSPG) both at small and large energies, with both NSPGS's
involving a total of 4/ + 2 free parameters. The physically relevant solution can be
uniquely determined (i) by the construction of the NSPGS at small as well as
large energies, (i) by a continuous connection of these at an appropriate
connection point U, and (iii) by additional normalization. ‘

A special technique was developed to isolate numerically all contributions to
both NSPGS’s starting firstly from a sufficiently large energv down to the
connection point U, and secondly from the singular point U = 0 up to U, to find
thus both NSPGS’s. This technique leads to the solution of the system in an
approximation order with 4/ + 2 terms via a (2/ + 1)-fold backward and a
(4/ + 2)-fold forward integration in order to construct both NSPGS’s from the
singular points to U..

Hi. RESULTS AND DISCUSSION

The calculations have been performed for an rf plasma in H. at a field
amplitude E,/p, = 23 Vem~! Torr ! applying the collision cross sections used
in [2]. Figs. | to 4 show the harmonic contributions to the isotropic distribution
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in dependence on the electron energy for the field frequency values w/p, = .
107, 1,105, 7. 10°and 10" s Torr~'. These and all further results are obtained
in an approximation with / = 2, i.e. with 4/ + 2 = 10 terms.

At ofp, = r. 10" large contributions of the harmonics F; and (to a lesser extent)
Fy can be observed at higher electron energies (above ~ 10 €V) and somewhat
smaller contributions at lower energies (below ~ 10 eV). For lower field fre-
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Fig. 1. Harmonic contributions to the isotropic  Fig. 2. Harmonic contributions to the isotropic
distribution at @/py = 7. 10" s~ Torr™"' in de- distribution at w/p, = x.10%.
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Fig. 3. Harmonic contributions to the isotropic  Fig. 4. Harmonic contributions o the isotropic
distribution at w/p, = 7. 10% distribution at . w/p, = 10"
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quencies these contributions become still larger. From Fig. 2 it can be seen that
at w/p, = n.10® a drastic reduction of both harmonics, particularly at lower
energies, occurs, whilst a larger contribution of F, remains at higher energies.
With a further increase of the field frequency this reduction continues as seen
from Figs. 3 and 4 and at w/p, = 7. 10° also F, is already remarkably smaller
than F, even at the highest relevant energy. At such a field frequency the
isotropic distribution is practically represented by its dc part F. Moreover, the
comparison of Figs. 1 and 2 indicates that up to this field frequencies the dc part
Fy of the isotropic distribution shows only a slight change. Only when passing
from w/p, = 7.10° to 10" a drastic depopulation in the dc part F, of the
isotropic distribution at not too small energies takes place and the harmonic
contributions F, and F, decrease further on.

Thus the question arises how such a drastic evolution of the harmonic contribu-
tions to the isotropic distribution can be understood. As already mentioned this
becomes possible when using the lumped dissipation frequencies for energy and
impulse which can be represented by the individual collision frequencies accord-
ing to the expressions

muwﬁw\meMkm.u ._MHHCWMHN. (12)
Po Mp, ©py po pe T pg
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Both these frequencies are shown in Fig. 5 for H, in dependence on the electron
energy. As mentioned in the Introduction large modulations of the isotropic
distribution are possible for w/p, < v,/p, since then at every instant during the
alteration of the rf field a remarkable energy dissipation in collisions can still
occur. In agreement with these statements large contributions of the harmonics
£ and £, can be observed at lower field frequencies. If w/p, becomes comparable
to v./p,, a larger instantaneous energy dissipation in collisions is no longer
possible, which leads to a distinct reduction of the isotropic distribution mo-
dulation. This is the case at w/p, ~ 7. 10* in the region of lower electron energies
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mmpo ?w. mmo: m.qon: 5@<m_:am0m§€::Em.m.%rﬁmﬁﬁrnmn energies the
:.mzjﬁ.vs_o contributions remarkably decrease as obvious from Fig. 2. The same
situation occurs at higher energies at a field frequency of ~ 7. 10° so that now
in Fig. 3 the harmonic contributions become small also at higher energies. Only
for field frequencies, which are relevant to those considered in Figs. 3 and 4, w/p,

becomes comparable or even larger than the impulse dissipation frequency v,/p :
C:am.ﬁ these conditions also a larger instantaneous impulse dissipation in nm__w..
stons 1s no longer possible, so that a reduction of the electron current density
and of the resultant power input from the rf field occurs as it is clearly seen from
Rm::.m presented later. The reduced power input now causes the mentioned
drastic depopulation of the dc part of the isotropic distribution with increasing
field frequency in this frequency range.
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Fig. 6. Harmonic contributions to the anisot- Fig. 7. Harmonic contributions to the anisot-
ropic distribution at @/p, = x.10". ropic distribution at w/p, = x. 10°.

Ho illustrate the harmonic contributions to the anisotropic distribution £ (U, 1),
Figs. 6 and 7 show the resuits for w/p, = 7. 107 and 7. 10°. Of course according
to (7), there is no dc part of f,. At lower frequencies the higher harmonics Fy
m:.a F{ yield besides the lowest harmonic F{ a remarkable contribution to the
anisotropic distribution. When w/p, becomes comparable to v,/p, the higher
:m:.:oé.om F{' and F{ strongly decrease, similar to the harmonics F, and F, of
the isotropic distribution. This happens, as obvious, when passing from Fig. 6
to 7. Only if w/p, becomes comparable with the impulse dissipation frequency
Vi/po- also a strong reduction of the lowest harmonic F{* occurs. The onset of this
last effect is already indicated by Fig. 7.
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The characteristic changes of the harmonic contributions to the isotropic and
anisotropic distribution just discussed are reflected in the corresponding field
frequency dependence of the harmonic cintributions to the mean electron energy
(determined by the isotropic distribution), electron particle current density and
the power input from the rf field (both determined by the anisotropic distribu-
tion) as given by (9) to (11). Fig. 8 shows the harmonic contributions to the
mean electron energy according to (9) over a wide field frequency range, i.e.
from @/p, much smaller than the energy and impulse dissipation frequency up
to w/p, remarkably larger than both dissipation frequencies. In agreement with
the frequency dependence of the harmonic contributions to the isotropic distri-
bution, |U,| is comparable with the dc part U, at low o/p,. When @/p, approach-
es and exceeds v,/p, (cf. Fig. 5), a drastic decrease of the harmonics U, and U,
can be seen. However, up to field frequencies of w/p, ~ 10° the dc part U,
remains nearly unchanged. But if w/p, approaches and exceeds v,/p, (cf. fig. 5),
also the dc part of U remarkably decreases. This last fact is a reflection of the
above mentioned strong depopulation of the dc part £ of the isotropic distribu-
tion at these field frequencies.

Fig. 9 shows the harmonic contributions to j,/a, (i.e. to the drift speed) accord-
ing to (10) in the same representation as in Fig. 8. Despite the larger contribu-
tions of the higher harmonics F3 and F{ to the anisotropic distribution at lower
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Fig. 8. Harmonic contributions to the mean Fig. 9. Harmonic contributions to the electron
electron energy in a wide field frequency range. particle number density.
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m.nE frequencies (cf. Fig. 6), the higher harmonic contributions (j,/n,), and
F\Sv..m are already relatively small in comparison with the lowest wmm%oio
U./n), _:.H:.m range of lower w/p, values. When @/py approaches and exceeds the
energy dissipation frequency V./Po, the higher harmonics drastically decrease
however, the Eémmﬁ harmonic remains nearly unchanged. Only if alp cnooEm._
comparable with and larger than the impulse dissipation ?np:m:oov\ v,/ X
.Rq.:mlnwza reduction also of the lowest harmonic (j,/n,), can be ocmn?aa.. &_mm:m
IS In correspondence to the strong reduction of the _mSan harmonic F 4 s&m
mcreasing field frequency in this frequency range (cf. Fig. 7). "

Aom ._om ) Fig. 10. Harmonic contributions to the power
10 input from the rf field.

Finally Fig. 5. reports the harmonic contributions to the power input from the
nwnm@_a moooa._:m to (11) for the same field frequency range. Now the dc part
(U"/py) and, in addition, the lowest harmonic contribution (Uf/p,), are :nm:
ammm_ up to large field frequencies, whilst the higher harmonics cAmum\ﬁv msw
(U’/py)s are already relatively small at low field frequencies and awmmmom__w
decrease s&m.: ®/p, approaches and exceeds the energy dissipation frequency
Both quantities, the dc part and the lowest harmonic of the power input 5<o_<m‘
Wo«ooa_”_m to (11), the lowest r.m::o:_.n (Ue/n.),- Therefore these quantities REM:L
ge and nearly n@c&.:v to high w/p,. However, the higher harmonics are small
for m: ?.WE frequencies since they are determined by the higher harmonic
contributions to the electron current density (cf. (11) and Fig. 9). When aw/p
becomes comparable with and larger than the impulse dissipation ?.8:@:8\, ::M.
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dc part and the lowest harmonic contribution to the power input from the rf
field rapidly decreases. However, the second harmonic (U*/p,), remains larger
than the dc part at these field frequencies. This fact means that at these w/p,
values the power input from the rf field to the electrons becomes even negative
during certain parts of the rf period, i.e. the power flows partly back from the
electron component to the rf field, which is a reflection of the increasing inertia
of the electrons in the very rapidly varying rf field at large o/p,.

Concluding we would like to emphazise that the complex change with the
increasing field frequency of the harmonic contributions to both distribution
parts as well as to the relevant macroscopic quantities can be well understood
on the basis of the two lumped dissipation frequencies for energy and impulse,
i.e. by using quantities which can already be obtained from the atomic data of

the relevant electron collision processes involved.
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FAPMOHUYECKHE BKJIAZBI B PACITPEAEJAEHHUE CKOPOCTH 3JIEKTPOHOB
U MAKPOCKONMUWYECKUE BEJIUYMHLI B OAHOPOJHOM H, rf TIJAIME

Pabora nocpasuieHa aHAAM3Y FAPMOHHYECKUX BKJIAOB B PACMPEAEIIEHUE CKOPOCTH ¥ COOTBET-
CTBYIOINMX MAKPOCKONMHYECKHX BCAMYUH, TAKMX, KaK 3JHEPrUs IJIEKTPOHOB, MIOTHOCTHL NMOTOKA
4aCTHL # MOLUHOCTb Ha Bxoae, A1 rf o6beMHo# nnasmel 8 H, B IMpokoM auanasole 4acToT 0.
AHaJ13 OCHOBaH Ha TeXHUKE Dypbe-pasNoKeHUs, TPUMEHEHHON T HECTALMOHAPHOIO YPABHEHUSA
bonbumana ang dnekTpoHoB. Pusnueckoe oOBACHEHHE 3aBHCHMOCTH TOJNEBOM 4acTOTHI rap-
MOHHAYECKHUX BKJIAA0B OT PAa3HbIX BCJINYHH MOXET @V:.V H4HO, €CJIH BBECTH =U=mnh0m:rmo JUCCUNA-

THUBHBIC YACTOTHI KAK JJIA 3HCPrHUH, TaK M IJI1 UMITYJIbCOB.
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