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LYAPUNOV EXPONENTS OF THE GENERALIZED
ONE-DIMENSIONAL ANDERSON MODEL

MARKOS P.." Bratislava

We give the general formula for the particutar sum of the Lyapunov exponents of an
electron in the generalized one-dimensional Anderson model. It was used for the
calculation of the weak disorder expansion of the Lyapunov exponents. The same
expansion is derived from the T-matrix formulation of the problem.

1. INTRODUCTION

We define the generalized one-dimensional Anderson model (GODAM) by
the Hamiltonian

H = H,+ Hg, (1)
where
mcuM»M_ Viln+ k> <nl + I <n+ kY, V=1, @
and B
Hg= 13 e,|n><nl 3)

represents the diagonal disorder (DD) with random independent energies e,
e,y =0.

Model (1—3) has been studied in [1], where we used the supersymmetric
representation of the Green function of the electron for the calculation of all
Lyapunov exponents (LE) of system (1). The basic formula, from which our
calculations in [1] started, however, holds only for the “smallest” Le ¥,. The
main aim of this paper consists in the derivation of the true weak disorder
expansion (WDE) of all LE y, of system (1). To do so, we choose two different
methods: (i) We define the transfer-matrix which corresponds to the Hamil-
tonian (1), and formulate the problem as that of the calculation of LE of an
infinite product of random matrices [2]. We proceed along these lines in §§ 3, 4.
The form of the obtained WDE is very similar to that of the expansion of LE
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of quasi-one-dimensional systems [2, 3]. (ii) Using the properties of some
antisymmetric combinations of Green functions, we derive in §5 the general
formula for the particular sums of LE. Then, by standard treatment developed
in [1], we construct the graphical representation of the expansion and determine
the rules of calculation of the contributions of diagrams. This method enables
also the generalization of the obtained results for the case of systems with
off-diagonal (ODD) disorder.

We show that although the starting formula in [1] does not hold for all LE,
the discussion of the anomalies of WDE (which generalizes the study of the
band-centre and the band-edge anomalies in [4—6]) remains valid; only a small
correction of the coefficients of the 1 /x-expansion of y(x) for the case of the
band-centre-anomaly is necessary.

2. THE GREEN FUNCTION

The Green function of the electron GJ,(E + i0) with the Hamiltonian {2) can
be found in the same way as for the “classical” 1D Anderson model [7]

Qw%m.:ovnh.,‘. dk nxa_ivla: @)
2rJ-= E+i0 — E(k)
where
E(k) =2V,-cosk + 2V,-cos2k + ... + 2cos Nk. ®)
The substitution expik = w gives
oy N—1,1b~al
GY(E +i0) = =1 diy "~ v (6)

2mid (w—w)(w—wy)...(w— Wan)

where the integration proceeds along the unit circle |w| = 1, and w,, Wy, ooey Woy
solve the equation
E(w) = E+10. @)

Owing to the infinitesimally small imaginary part +i0 eq. (7) has no degenerate
solutions; thus we can order all solutions of (7) as

il <fwal < ..o < [wyyl. ®)
From (5) one easily finds |
w,=wi'si i, i=1,2, .. N. )
The integral (6) can be calculated using the Cauchy theorem and gives

N
9 i0) = {E+1i0
GY(E +i0) ._M_mi + i0) 10

&(E +10) = g, (E +i0) = go(E + 10, ¢,) exp (ig,|b — al)
with
w; = exp (ig)), (1n

9 1=1,2, ..., N represents the solutions of (5) with a positive imaginary part,
and

wh-!
8w(E+10,9) = ~ ——— (12)
: (w; — wy)
ki
is the “density of states”:
i
E+i0, g) = —iQ,= —— (13)
Zool q;) 0 OEK)
Ok |k=yq

3. THE T-MATRIX

The system of equations for the wave function ¥ (E) of the electron with
energy E on the site n:

Lovthoafov + o +Qe—BY+ K  +..+¥%_y=0 (14)

can be rewritten into the equivalent form

LA fon-t
rewai ) (agamy| Bew-a (15)
~.-“|Z+_ ..*\:IZ
where
Wt —Woo s E; =V, ., —Vy_,, -1
A= _ 1 (16)
1 0
is a 2N x 2N matrix with a unit determinant:
detd =1, an
and B, is 2N x 2N random matrix, which has only one non-zero term
(B)y = €,0, 6n - (18)

Formula (15) enables us to find all LE y of system (1) from LE 7 of the product
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of random matrices

w_ (A + AB) (19)

n=1

whith matrices 4, B, given by (16, 18).

4. LYAPUNOV EXPONENTS

In this section we calculate all LE 7 of the product (19). To do so, we use the
formula of Derrida et al. [2] (see formula (AS5) in the Appendix).

First we have to diagonalize the matrix 4. We look for the matrices S, T such
that :
T-A-S=1V, (20)

V being a diagonal matrix with eigenvalues v, :
loid > Jog > ... > logl- 21
One easy checks that
¢\H€~z+_LH§..|_. (22)
Matrix S has the form
S, = v 23)
In the new representation matrix B, reads
wavq =e, T, Mz? (24)
so that we need only the first column of matrix 7. As
T-S=8§8-T=1 25)
it is enough to solve the system of the linear equations
M. SuTh = O »
which gives
fy= (26)
MI_ (v — v)
#i
Using (13, 22) we obtain
i Him.mxc.‘_lz i<N
= i Qs ioVNe - i>N (27)
Syr= v’ j<N
=05 1o, j>N

Relations (27) together with (18) determine the matrix B,. After substitution
into (AS5), we obtain the WDE of the LE of the product (19) in the form

C=t+nH+.+7=—ilg+..+g)+

) 2 P N\A 4 P

2/,2\2 p N
IEMW M ||Es||©~.©.\,@,©sl

2 j=1 Um=p+1 0,1, — UV,

N

LY 0000, § 0000

l*l
k=p41m=1 UU U, JU — 1 kom=1 0000, — ﬂw

+ P»AQNVN M W mmm.@»mi

k=1 “p+1 v;fv, —

_ WU Qmmm&kmiw. ANWV

m=1 00, — 1

Expansion (28) represents the WDE of the first p LE of the product of
random matrices, and so 7, ..., 7, represent the LE with the p largest positive
real part. Thus, each 7, corresponds with the LE of the Green function (10) ¥,
as

fi= —Ywai-i 29)

since |Re 7| < |Reyl < ...

Expansion (28) is very similar to the WDE of the LE of the quasi-one-dimen-
sional system [2, 3] (of course, some differences arise owing to the structure of
the Hamiltonian). For the quasi-one-dimensional systems we have derived the
WDE of the LE using a supersymmetric representation of the Green function
[3], which provided the graphical representation of all terms of the expansion.
The similarity of both expansions indicates that it is possible to derive (28) also
from the graphical expansion, similar to that presented in [1, 3]. We find such

_an expansion in the next paragraphs.

5. GENERAL FORMULA FOR THE LE

In the previous sections we found the WDE of all LE of GODAM to be
similar with the WDE of the LE of quasi-one-dimensional systems, as derived
in [2, 3]. This similarity enables us to suppose that we can easily generalize the
supersymmetric treatment developed in [1] also for GODAM.



To do so, let us study the mxnnnmmmos

S =G24 Gly — Gy Gy, (30)

with G, . given by (10), and a,=a+ @, b;=b+ m: |, 1B] <|b — a|. For
= B, =0, @, = B, = A one easily finds

&;aéaslswsla;m<9;¢a%@wm>g+:. (31)

where the dots supply the terms which, owing to (8, 11) decrease much more
quickly in the limit [ — a| — oo. Thus,

1
log S? - (g, + q,). 32
b — 4l B2 . (9 +9) (32)

We can generalize (32) as follows:
Let us construct

HMAICEQof csﬂ. Qnsg (33)

2

where o is the permutation

o:(1,2,...,p) =k, ky, .. k) (34)

and r, is the number of changes of the positions of numbers (i, j), which @
defines. Then after a suitable choice of g, §; one can prove that S} is linear in
g; (1.e. it does not contain terms with g¥, g > 1). Then

5 ; ~
(g +q+...+¢g)= lim ——logs,. (3%
|b—al— o _Nv i Q_

If the disorder is taken into account, we can formally express the Green function
in the form

Qm& = Mﬂ%ﬁﬁ-ﬂ:ﬁ@ - viM HNH_S Aw@v
with " "
= m: QS \A:i €Xp ﬁ— AQ: - QSV Qv. Aw\wv

Here A4,,, contains the disorder together with all necessary summations. As 7,,,
does not contain (b — a), we can generalize (35) as

mns+$+...+$|s _:_s n _A_omwv, (38)
—al—+ ..‘Q

(note that there is, in agreement with (29), a difference in the numbering of
¥ i), where

8

M1M¢;v:m; (39)

i=1

The formulae (38, 39) provide the starting point for the construction of the
WDE.

6. GENERALIZATION OF THE WDE

From (38) we can construct the WDE of the LE in a similar way as in [3].
First, we rewrite (38) as

1
= li — — — (ST 40
I, _T_ﬁé_Ta = L (Sl (40)
which enables us to construct the graphical expansion of WDE : Each diagram
consists of n groups of p lines; each line represents a Green function, and in each
group the summation over all @ (34) should be performed, which secures that
in the expansion terms with g, ¢ > 1 vanish in each group. Owing 8 (40), only
contributions proportional to n(b — a) are of interest, ~ (b — a)’, n?, etc. may
be omitted. One can check that the terms ~ (b — a)’ together make Em contribu-
tion ~ n? and so vanish too.

a
b h o
¢ i
. P
||@||n_ i O
8, —*=
_0 K q
€ i
0 n_w H«»ll
f 00
m
Fig. 1.



In Fig. | we present all diagrams of WDE up to the 4th order in disorder. For
simplicity, we have described only the lines with “interactions”. The construc-
tion of diagrams has been explained in [1] — here we only recall that the
“two-particle interaction vertex” diagrams 1b, ¢ represents A? (¢2). The “four-
particle vertex” stands for A* (e*), etc. Careful considerations lead, in analogy

with the case of quasi-one-dimensional systems, to the following rules for the
calculation of the contributions of diagrams:

1) the sign of the k-particle diagram is (—1)**+'

2) the inner lines in diagrams should be represented by any g,,, m= 1,2, ..., N

3) the external lines should be occupied by any g,,, m < p in such a way that the
contribution of the diagram is proportional to (b — a). One has, however, to
be careful and eliminate the terms ~ n2. Thus, in diagram ¢ one can occupy

the four lines (from left to right and from top to bottom) by m,, m,, m,, m,,

m, # m, (if both lines belong to the same group — the diagram is ~ 1), or

my, my, m,, m, (the lines belong to different groups, and the contribution is

proportional to n(n — 1)), but not by m,, m,, m,, m,, m, # m,, since now
there is n” such a contribution

4) summation over all permutations o, all positions of interaction points and
all representations of lines should be performed.

In this way we can construct the WDE of the sum I, of the first p LE with
the smallest negative real parts (they coreespond to the ig,, ..., ig, from (11)).
As the resulting form of the expansion is rather complicated, we do not present
it here, since, owing to (29), we have

L=-0L+1,_, (41)

According to rule (2) any diagram in Fig. 1 contributes to I, if the lines which
start from q, are represented by g,, ..., g,- If one calculates I, ,, then the
external lines should be represented only by g, ..., -1 Asy, =1 -1, we
find that one can construct from the diagrams in Fig. 1 also the WDE of any
7, if the rule (2) is modified as follows:

2a) the external lines should be occupied by any g,., m < p, but at least one
external line should be represented by g,.

7. APPLICATION

First we present the WDE of 7, of model (1) with DD. In the 2nd order
approximation we need only the diagrams b, ¢ and obtain )

. »wa . z

suélfAv@T.M@l ﬁ. Ev
2 i=p+1

As pointed out in [1, 3], the graphical expansion can be used also for systems

10

with any off-diagonal disorder. Thus replacing Hg in (3) by

Hy=AYv{ln+ 15l +n) (n + 1} (39
we find N
Yp. 000 = 14, — 2: A7 <0 &M (I + exp(ig)-cosq,)-Q.Q,

i=1

IN. AM oomN Aﬁv.mbw +oomN Sbmw. 33

i=1

Details of the calculation of diagrams with the ODD can be found in [1].
Now let us verify the discussion of the anomalies of the WDE presented
in [1}. . o
1) Anomalies caused by the divergency of @, in (13). They arise in the
extremal points ¢,, of the dispersion relation (5), where

OE(k)
Ok lk=q,

=0 (44)

(g =0, =, for instance). Now the most divergent diagrams, which contribute

to the leading term of y,, are those with all lines occupied by g, (10), as

supposed in [1]. Thus, the analysis of these anomalies, as given in [1], does not

need any correction. .

2) Anomaly ¢ = 7/2. Now diagrams i, j, which make a contribution proportion-
al to 14 (e?>?¥/[exp (—i4q) — 1] diverge. One can construct the 1/x expansion
of the function f(x):

Wa = 72, X) = ig — A2 (e? Q2f(x), 45)
x = (E — E(n/2)/(X*(e?> Q) (46)

using the same diagrams as in [1]. The only difference consists in H.w@ occupation
of the inner lines of the six- and higher-order diagrams; thus, instead of the
expression (30) in [1] one should write

1
32x?

A = 1f2) = iq — A2 (e P%JA F12 —ix—if8x+—— 8+ A+ wi

(47)

where 4 = W 0.9, B= ) 09,

izp i=1 -
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8. CONCLUSION

Let us briefly summarize the obtained results:

In the first part of the paper we have transformed the problem of the calculation
of the Lyapunov exponents of the generalized one-dimensional Anderson model
into the same problem for the infinite product of random matrices. Then, using
the formulae of Derrida et al. [2] we have derived the weak disorder ex-
pansion of particular sums of the LE (formula (28)) up to the 4th order in
disorder.

In the second part, we have derived the exact formulae for the particular
sum of the LE for any Hamiltonian, the Green function of which is given as a
sum of exponentials (10). The antisymmetric formulation (33) enables us to
eliminate the product g, ... g, instead of the undersirable terms gl, gl 'g,, etc.
Then, using the standard techniques, presented in [1, 3], we have constructed the
graphical expansion of the LE, which is equivalent to that found by the T-matrix
method (28).

The possibility of the construction of a graphical expansion has two impor-
tant consequences: (i) it can be used also for the off-diagonal disorder, and (ii)
the higher order terms of the expansion can be easily constructed. As an
application of the graphical expansion, we derive the leading term of y, for
systems with the DD and the ODD, and analyse the anomalies of expansion, first
discussed in [1].

The results presented in this paper modify some ideas presented in [1];
namely, as it can easily be shown in (38), the formula (7b) in [1], proposed for
the calculation of any LE, works only for the smallest LE 71- Nevertheless, the
analysis of the anomalies of the WDE, as given in [1], needs only small,
non-essential corrections.

We believe that the antisymmetric combination of the Green functions,
proposed in § 5, can find further applications to different physical problems.

APPENDIX

LYAPUNOV EXPONENTS OF THE PRODUCT OF RANDOM MATRICES

Let us consider the product of the random matrices

p=11M, (A1)
where
M,= A+ AB, (A2)

12

A is a diagonal matrix with nondegenerate eigenvalues v, v,, ..., Uy
lod > o > ... > oyl (A3)
and B, is a random matrix,
By = 0. (A4)

Derrida et al. [2] derived for the particular sum of the LE of the product
(A1) the following WDE :

- o 2 & (BB
Nm”vu_+wu~+:.+g\uﬂM—OMSlM.M R
i=1 j=1 v;;

AP L (BBiB. A & (BiByBimBu)
+4 M A ik »vlll M k ke

3 =1 000 4 jm=1 V0,0, 0,
&% BuBd (ByBu

4
2 St km=p+1 00,0, — U 0,)

e W W {BinBiip {BuBy) (A3)

gk=tm=p+1  0;0;0.{0 — U,)
J
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3KCIIOHEHTHI JAMNYHOBA B OBHIEN O AHOMEPHOU MOJIEJI
) AHAEPCOHA :

TMonyuena oburast Gopmyna Ans CyMM IKCToHeHT JlsnyHosa (3J1) snexkTpoHa B 0DwieH on-
HOMepHO#i Mozenn AHgepcona. OHa HCTIONB3YETCS LIS OCTPOCHUS Pa3IOKCHHA DJ1 B cTeneHAx
g 4-

Gecriopsaka. [lonydeHHOE Pa3jIoxKeHHe IKBUBAJICHTHO PA3JIOKEHHUIO, TIOIYIEHHOMY U3 T-maTpu

HO#t POpMYIHPOBKH MPOOIIEMBIL.
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