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ON STOCHASTIC RC-CHAINS
BEZAK V.," Bratislava

A stochastic theory is formulated for the electrical RC-circuit with a source
voltage V;(f) taken as a stationary Gaussian process of the Ornstein — Uhlenbeck
type. The conductance 1/R(r) and the reciprocal capacitance 1/C(t) are considered
either as stochastic functions (stationary Gaussian functions of the Ornstein — Uhlen-
beck type) or as constants. It is shown how the mathematical analysis of the RC-
circuit alters in three cases: 1. when R is stochastic and C constant, 2. when R is
constant and C stochastic and 3. when both quantities, R and C, are stochastic. It is
clucidated that the first two cases, but not the third, allow to derive results (e.g.
cumulants of the capacitor voltage or charge) without any use of a perturbational
calculation.

L. INTRODUCTION

Recently a mathematical monograph on stochastic systems has appeared [1]
which seems to be appropriate to mathematically educated non-mathemati-
cians. (I call so those people, including myself, who are experienced in a lot of
the basic methods of mathematics — say “‘engineering mathematics” — and
who wish, when reading a new mathematical manual, to learn something
practicable without being forced to devote too much time to study a heavy
“overconceptualized” treatise.) Ref. [1] is divided into twelve chapters and only
the last deals with applications. One of the short paragraphs, which exemplify
ten applications, has been entitled “RC-chain with a random capacitance”.
Being aware of problems in the noise theory, I was curious to learn what was,
in fact, hidden by such a title. I was surprised to find a striking disparity between
the title and the contents of the paragraph. Fortunately, a remedy was easy
— if the mathematical contents of the paragraph were to stay unchanged, the
title ought to read contrariwise, i.e. like this: “RC-chain with a constant capa-
citance and a random resistance”’.

My intent in the present paper is to show how to solve the problem as it was
declared, but not solved, in Ref. [1]. To do this, I will draw a parallel with that
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problem which the author of Ref. [1] has actually solved, but Emmooznmza
physically. In addition, I will also pay attention to a further (i.. third) problem
which may be considered as a generalization of the former two. I hope that the
juxtaposition of all these problems is interesting enough since similar problems
(and, naturally, even much more complicated ones) occur in the noise theory of
electronic devices and circuits.

II. THE RC-CHAIN WITH RANDOM ELEMENTS

In the present paper I will analyse the circuit according to Fig. I.
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Fig. 1. The RC-circuit.

I1.1. The RC-chain with R = const., C = const.

Let us suppose first, following the logic of introductory textbooks on electric-
ity, that both the resistance R and the capacitance C are constant in time.
Evidently, the source voltage V;equals the sum of the Ohmic voltage R/ and the
capacitor voltage 1,

Ve=RI+ V. m
If Q is the electric charge on one of the capacitor electrodes, we may write
V.=Q|C (2)
and
I = dQ/dt. {3

After differentiating equation (2) with respect to the time variable 7 we obtain

the relation
v

dt

I=C 4
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P.: dC/dt = 0. When substituting expression (4) into equation (1) we obtain the
differential equation

&M_N\m + V. =TIV %)
with the damping constant
= L > 0. (6)
RC
If V5 is also a constant, we obtain the general solution
Vo) = Ve(0)e " + V(1 — e, 7
Equation (1) then gives the expression for the electric current
here I(1) = 1(0)e™"" ®
10) = s les. ©)

Now let us make the ansatz (and from now on I shall hold by it throughout

this paper) that the source voltage Vs is a stationary Gaussian process. Its mean
value keeps constant in time:

ts = {Vs(0)),  dug/dt = 0. (10.1)

For simplicity, I shall take ¥;(¢) as the so-called Ornstein — Uhlenbeck process.

,_.,Em has been defined as the stationary Gaussian process with the autocorrela-
tion function

Ws(t, 1) = <[Vs(t)) — ug V() — pgl) (10.2)
chosen as the simple exponential:

Ws(ti, 1) = o5 exp(— 1, — 1] xy). an

Here o3 is the dispersion of V;

o5

I

<IVs(0) — usP>, (12)
m.:a %5 > 0 is the reciprocal value of what may be called the source correlation
time 7g, i.e. x5 = 1/z4.

Owing to the linear relation between Ve and ¥ (cf. equ. (5)), the voltage
Vo(t) — and the same statement is true, in accord with eq. (4), for the current
I(t) — represents again a Gaussian process. My first aim is to calculate the mean

He(t) = V(1)) (13)
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and the autocorrelation function
We(ty, 1) = <Ve(t) — pc(tNVe(t) — pe(L)D. (14)
As dI]dt = 0, the general stochastic solution to equ. (5) is

r

Ve(t) = & dr'Vy(1)e =07 4 1 (0)e . (15)
. .

After averaging it, we obtain the relation
() = pis + [uc(0) — psle™". (16)

In my further analysis, I shall distinguish between the following two cases:

Case a. defined by the assumption that ¥(0) is a deterministic value given in
advance; then obviously u-(0) = V-(0); and

Case b. defined by the assumption that V(¢) is a stationary Gaussian process;
then duc/dt = 0 and hence u.(t) = u-(0) = ps = const. (Of course, the cases a.
and b. have to be understood as two typical situations but not as all possibili-

ties.)
Using the definition of W, by formula (14) we obtain the result

4 1y
e, n) = ﬁ% &% di; We(ty, 1) exp[— (6, + 1, — 17 — 1) T
0 0
(17.a)
for the case a. In the case a. the dispersion
[oé(F = W, 1) (18.2)

is an increasing function of the variable ¢, with some asymptotic value W2(c0, o0).
To calculate W,(t,, t,) for the case b. we may rewrite relation (15) into the
form

Ve(t) = e — [Ve(©) — e = & 4 V() — pgde .
’ (15.b)

(Recall that u- = pgin case b.) By raising the equality (15.b) to the second power
we obtain — after performing the averaging and some elementary calculation

— the expression
W2, t) = [62) cosh (eI — W 1@:% .ﬁ drydry-
0 JO

Ws(tl, 1) exp[— (11 + 1) T (17:b)
for the case b. (Note that
[o2] = WA, 0) = Wiz, 1), ie. dogjdi=0
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in case b.) The function We(ty, 1) is always symmetric but now, owing to
the stationarity of V.(¢), it depends only on the difference t; — 1, ; therefore,
W2, 1) = W21, 0) = W2(1)) in case b. If we take the limit 7 — oo in formula
(17.b), we obtain the formula

ﬁqm_Nnﬁ%o ﬁ diydiy Wy(11, 1) exp[— (1] + 13) I] (18.b)

for the case b.

Formulae (17), (18) hold for an arbitrary autocorrelation function Ws(1, ).
In particular, if we take into account the Ornstein — Uhlenbeck autocorrelation
function (11), we obtain the results as follows:
Case a:

—\w\m,nAN_u va =

—( L
Iole™o+ Nr.wg wmr 1+

— (e
I+ xg r
1

+Mwwm.wsﬁ®s,eq|;fs~v|n:q,§ffoiﬁ-¢ﬁ+uw (19.2)
)

for 1, 2 ¢,. If 1, < 1,, we must exchange ¢, and 1,.

[oe() = WG, 1) = [oa(c0)P

ar -
1 —e-2r_ L ;TI@I@L:,Q
ﬁ ﬁaﬁA ) (20.a.1)
where
I'c?
[a&(0)P = 5, 20.
c It (20.a.2)

In the special case when #s— 0 (i.e. in the approximation of the infinite source

correlation time, 75— o0), the autocorrelation function Wj(s,, 1) is reduced to
the form

Jim W, 1) = of(1— e ) (1 - 72N, (21.2)

Case b:
W20, 1) = [62] cosh (¢I) — W ot (O, (19.b)
[68F = [08(0) : (20.b)

.més if [0¢(1)] were not specified by formula (19.a), i.e. if we were not consider-
ing Ws(2,, t,) in the Ornstein — Uhlenbeck form, relations (19.b), (20.b) would
still be formally exact. The function W2(0, 1) tends to zero for ¢t — oo. This can
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be seen directly in the case of the Ornstein — Uhlenbeck process ¥(¢); namely,
if expressions (20.a) are inserted into formula (19.b)

2
I'og

B (e e, @1b.0)
- As

AR

On assuming simultaneously with ¢ — oo (¢7> 1) that #,— 0 (0 < % < I'), so

that product tx need not be either too small or too large, we obtain the simple
exponential

lim W20, 1) = cle™ ™. 21.b.2)

£+ 00
x50

I1.2. The RC-chain with random R and C = const.

Assume that I"in equation (5) is fluctuating randomly. For simplicity, I take
I(r) as a stationary Gaussian process non-correlated with the process ¥,(1).
Moreover, let us reduce a little the problem by accepting the assumption that
V(0) may be taken as a variable independent (statistically) of the process I'(t).
So we have already completely defined the mathematical problem whose formal
(perturbational) solution has been suggested in §12.8 of Ref. [1]. From the
viewpoint of physics we must, if we want to save the validity of equation (5),
consider temporal fluctuations of the resistance R, or rather of the conductance
2 = 1/R, but not of the capacitance C (cf. relation (4)).

The formal stochastic solution to equ. (5) is

Ve(t) = V- (0) nxvﬁl%o &\ZN\L %

N \
+,_. &:N.,QJ @ Qﬁﬁl._. &N@JQ\L. ANNV
0 ot” I
This can be developed in I'. Then, if we confine ourselves to the third order
in I, we obtain all that Adomian has written about this problem in [1]. Let us
g0, however, further: Owing to the gaussianity of I, we can carry out the
averaging of V.(2), V.(1;) Vo(1,), etc., with respect to I” without the necessity to
rely upon the development of V.(¢) in I at all. .
I shall denote by { )5 the averaging with respect to ¥, when the averaging
with respect to I"is not considered yet. Similarly, { ) will mean the averaging
with respect to I"alone. The non-indexed brackets ¢ > will denote the averaging
with respect to all random variables under consideration (now it means with
respect to both ¥ and I'). Clearly, in our case

O =Or=<KOps-
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When subjecting equ. (22) to the averaging { ), one obtains {V.(r)>, as a
stochastic functional of ¥V :

Ve r= V(0) nxb_HIEﬁ+ W% % dr'dt’ Wi(t', NJL +
o Jo

+_. dar"ve(t") 9 Qﬁﬁlc = 5$+w% _‘ dr'dt W(t', NL
0 or” 2 JeJr
where (23)
ur=<I0)), dur/dt=0, (24.1)
Wity, 1) = {{I(t)) — pdI(2) — p ), (24.2)

Because of the stationarity of I'(t), the autocorrelation function Wi(,, t,)is, in
fact, a function of the variable |¢, — 1,. For instance, we may take

W1y, ) = ofexp[—|t; — 1] %] (25)
where o7, x> 0 are two constants. Then

- ~ i .
.—.%&:&&S\ﬁﬁr @HWMTIXI|QIQA VJQ 26)

Ar Xr

(for t > t").

When putting expression (26) into formula (23), one observes that the con-
dition
oF < priy 27)

must be fulfilled. Namely, the term in the mean {¥c(2)) r proportional to V(0)
must vanish for ¢ » co. (Cf. formula (7).) Moreover, we must also presume the
fulfilment of the condition

or< fr, (28)

otherwise the gaussianity of I'(¢) would not be a sound concept. (We know from
physics that both the resistance R and the capacitance C are non-negative. Each
Gaussian process I(¢) allows both positive and negative values of I" at any
distance from zero. However, we do commit no faux pas if we admit the
gaussianity of the proces I'(¢) provided that condition (28) is satisfied: then, viz.,
the statistical weight of the negative values of I” occurring in I(¢) is negligible.)

If we express V(1) and V.(t,) according to formula (22) and take their
product, we obtain a sum of four integral terms; these can be averaged with

respect to /. So we obtain the expression for the second statistical moment
of Vo(1):

28

Velt) Vet r = 3 Mir(ty, 1), (29)

i=1

where

1
M {1, 1) = [VeO) expl— (1, + 1) ] exp w :

1 ph

% de,dty We(t;, 1) +

0
4 o L a2

+ w% &% de; Wi (1, t5) +% % deyde, W1, mLM, (29.1)
0 0 0 JO

3.9

WQGTS — ) ud-
oty

5]
M1, ;) = V(0) meAlrtﬁvh dty V(4;

PR i o
~ 5, by ’ ’ ’ ’
.nxﬁﬁl ﬁh. ,_. dridty Wi (13, t7) + N,_, &:% di, Wty t5) +
2LJo Jo o 5

2 aly
+ % % drydr, W1}, &&“ (29.2)
g v5

M (1), 1) = M, (1, 1), (29.3)

@N

4 L]
M, (t, t,) = &;. dry Vo(e)) V(1)) ——-
aﬁA_ Nv h 1 o 2 hﬁ_v S\E2 @N%@mm

~ N— N_ Prd ’ o
.Wox_u_.lﬁbl~ﬂ+-l~m\th.ovaM —H._‘ ,% dnidiy Wi(ii, ) +
0oJ1y

h 53 o pl
+2 % dr, % dr, W(t;, @J% % dr,dry W15, &ﬁ. (29.4)
51 5 5 Ji

The derivation of these expressions has been based on the use of the formula

Amxv :, dta(t) ﬁQLv =
r
1
= exp T.w.—. &BADH_ -exp ﬁm ,—% du dva(u) Wilu, v) Q@L (30)

valid for any Gaussian random function I(#). In the role of the function a(r)
(which may be more or less arbitrary but independent of I'(¢)), “indicators”
have been used. (The “indicator” for an interval (a, b) is a function defined as
unity for a < ¢ < b and as zero outside the interval (a, 4).) Thus the calculation
of the expressions M, (t,, t,) was quite simple and straightforward, only the
results look formidable at first sight.
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I do not want more to exhibit such lengthy calculations — neither the author
of Ref. [1] did. Instead, my aim will only be the calculation of the mean V(D).

Therefore, let us return to expression (23). We must average it with respect
to V5. When doing so, we need not distinguish between the case a. and case b.
(defined in Section I1.1). (Anyway, the distinction would become relevant if we
were calculating higher moments of V., including the second V() Ve()))
The result is

pe(t) = CVel®)) = s + [ (0) — 1) %T? + W H % dv’ di W, &.
. 31)

In particular, if we take the autocorrelation function Wrin the Ornstein — Uh-
lenbeck form (24), we may employ expression (25) in the exponent:
. or 1 i
Uc(t) = ps + [uc(0) — ug] oxUWIEﬁ ITI'Q —-¢€ J@w
o P

(L1

In the approximation of large conductance correlation times, when 7, = 7=
= 1/3;— oo, we obtain the Gaussian temporal behaviour
1
Be(t) = ps + [ue(0) — ug meAlb:ﬁ 5 Nwo.wxﬁv (31.2)
if0 < <.
Generally, i.e. not only in the approximation of the large correlation times Tx,
the asymptotic temporal behaviour of p.(¢) is

2 2
He(1) = ps + [1c(0) — ug meAl NMV nxﬁ_wl Atﬁl w.lﬁv Q (31.3)
-
if 1 < 13, (Recall condition 27.)

This method, contrary to the method of the I -development proposed in
Ref. [1], has allowed us to consider relatively high values of o7 (provided,
however, that conditions (27), (28) are satisfied). Formula (31.1) for the Orn-
stein — Uhlenbeck process I'(z) is exact. Rewrite it in the form

2
uc(t) = pts + [uc(0) — pg] exp (— 1) exp ﬁw e?i% (32)
r
where
px)=x+e*—1. (33)

The parameter y = o}/x} is a dimensionless degree of the intensity of the
fluctuations of the damping parameter I'= 1 /RC. The variable x = tx, is a
dimensionless time. If y — 0, then or— 0 and this means that fluctuations of I
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are absent; then y = I = const. (Formula (29) is reduced to formula (15).) The
function ¢(x) is shown in Fig. 2.

There are many reasons why the conductance may fluctuate. They have been
described in modern books on noise (e.g. in [2], [3]). One of the most com-
prehensible models explaining the fluctuations of X, and hence also of I'=
= X/C = 1/RC (if C is constant), in semiconductors is related to electron-hole
recombination processes. Several other noise mechanisms for semiconductors
and metals are also well known. To decide which noise mechanism prevails (for
which resistor and under which physical conditions) belongs to the competence
of the solid-state physics and depends on many factors. I refrain from discussing
these problems in this paper.

P(x) v

Fig. 2. The function ¢(x) (full line). The dashed line corresponds to the asymptote x — 1. The
function ¢(x) determines (cf. formula (32)) the dependence of the average capacitor voltage g on
the conductance fluctuations.

IL.3. The RC-chain with random C and R = const.

This problem seems to me more academic than the problem of Section 1.2,
but I will suggest its solution. The academicity is connected with the fact that
usually capacitance fluctuations are negligible against the conductance fluctua-
tions. Perhaps we may consider two planar electrodes and a turbulent dielectric
gas or liquid between them, so that the permittivity will fluctuate temporally
around some constant value; then we may consider C(z), or 1/C(¢) if need be,
as a stationary stochastic process. Other problems where the capacitance may
fluctuate remarkably enough will occur, I believe, in the theory of electrets [4].

For dC/dt # 0, we may not start from equation (5). The best thing to do is
first to write, using relations (1), (2) and (3), the equation for the charge Q on
one of the capacitor electrodes:

do 1
& iro=_v. (34)
a e R °
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If we assume that A(r) = [/C(z) is a stationary Gaussian process such that

My =A()), du,/dt =0, (35.1)
Wi, 1) = [A(1) — u{A() — 14, (35.2)
we obtain the relations
1
tﬁHMF: (36.1)
1
Wi(t, 1) = .m W,(t, t,). (36.2)

(The reciprocal value 1/C might perhaps be called “anticapacitance”.) Equation
(34) is simpler than equation (5) since now the right-hand side does not involve
a product of two stochastic functions (because R has been fixed).

The analysis of equ. (34) (when I1(¢) is the process defined in Section I1.2) 1s
much the same as the analysis that has already been explained for equ. (5).
Therefore, it need not be repeated here in all details.

For instance, if the initial charge Q(0) is independent (statistically) of the

process I'(z), we may write {Q(t)), as the following (stochastic) functional
of Vs:

Q) r = Q(0) mxwﬁlﬁl w% % drdi’ Wi(t', w@ +
0 JoO

~ ~ : : \\ ~ ~ -, ll '
+Mh& _\hc X%Tel N :¢+L% &\&\x\%\, NL. ad

By averaging it with respect to ¥, we obtain the temporal behavior of the mean:

Ho(1) = <Q(1)> = p(0) oiél W % % dr' i W1, & +

N \\ S\ ~ N \ I '
+WM i a.N oxv_HIQ IN vtﬁ+m% % dr’dr’ Wi (', \L (38)

(1, (0) = A.Qevvb. In the special case, when »,— 0 (i.e. in the approximation
of the infinite capacitance correlation time Te = T4 = 1/uc = /3 o0), we see
that W, — o = const. Then

: 1
Uo(t) = p15(0) eaAlel = m%v ~

2
p Hi
R 2o}

Tms Aﬂw mw — daw T,qm Awm - Nvﬁ (39.1)
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where
VT .
daw (x) = % du exp (u® — x*) = —i % exp (— x?) erf(ix).
0
(This is Dawson’s function; it has been tabulated in [5]. Its mathematical .
properties can be found, e.g., in [6]. Note that some authors used to prefer the
Kramp function @(x) (cf. e.g. [7], p. 125),
du exp (u?) = —ierf(ix) = 2 exp (x%) daw (x),

o7

D(x) = 3 .ﬂ
Jrh

rather than the Dawson function daw (x).)
Formula (39.1) is acceptable for the times ¢ satisfying the condition

D<t< tlw. (39-2)
o}

which is, owing to condition (28), consistent with the condition
top< 1. (39.3)

11.4. The RC-chain with random R and random C

This problem is much more difficult than the preceding two problems. Let
(1), A(7) be two non-correlated stationary Gaussian processes (X=1/R, A=
= 1/C). Then I'(t) = X(¢) A() (cf. definition (6)) is also a stationary process.
The third stochastic process of the problem in question, non-correlated with
3(f) and A(1), is Vs(2). If py, p, are, respectively, the means of X(z2), A(2), the
mean of I'(¢) is

Hr= Hshy (40)
and the autocorrelation function of I(¢) is
Wilty, ) = [Walty, ) + u3] [Walty, 1) + il — pr- (41)
Now o:n‘vmmwo stochastic differential equation is this:
%JTM.\A.QHM.-\M. (42)
t

Its formal (stochastic) solution is
Q@) = 0 oxﬁ_yrl_. &\:\L + % dt" X"y V(1) oxnﬁl%_ &;JQ\;.
0 l§
e (43)
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If we Hmwn Q.AS as statistically independent of both the processes (1), A(1), the
averaging with respect to A is simple: “ ,

Q>4 = 0(0) exp ﬁ J:% %MQL.
. 0
1 _ _
.QuF. h h dr' di X(t') X(1") W, (¢, i+
+ h dar" E(1") Ve(t") eeﬁ — iy % , &M:L.

L _
.QGT % ; % v dr XY X0 W i. (44)

Im.no we have arrived at a point when it is impossible to proceed without
mEu._wEm a Unﬁ:&mmosm_ calculation. Namely, the next step should be to
subject expression (44) to the averaging with respect to X but the presence of the
(- Z)-terms in the exponents prevents us from the possibility to do it exact/
and at ease. On the other hand, in regard to the assumptions that g

O < fy, (45)
Oy <y (46)

?i:.or ng necessarily to be taken into consideration since otherwise the
gaussianity .Om 2(t) and A(¢) would not be physically acceptable), we may expect
that a certain perturbational calculation will be pretty nmq@o:ﬁ.v First of all, we
may develop the (X X)-exponentials into series with regard to W,. If we oo:woﬁ
ourselves with the approximation linear in W,, we obtain the Mmmcx

s, ~ 0|1+ [ [ ardr sy sy wye, ")
0 Jo
.ox_u_ul.f,‘. Q.RMQML +% dar" Z(e"y V(1)
0 0

L } i \

Similarly, writing ¥ = Mz + (2 — py) in the exponents of expression (47), we may

voa.moq: the development of the exponentials with respect to X — y,. The
majority of values of X — y, is of the same order of magnitude as o,. m shall
assume, for simplicity, that o, (and then also W,) is of the same M&Q of
magnitude as oy. (I regard this assumption as realistic but not as indispensable;
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for example, it may hold if the fluctuations of 2(r) and A(¢) derive from the
thermodynamic fluctuations in the resistor and in the capacitor which both are
kept at the same temperature.)

Setting aside the W,-term and putting, in the development of expression (47)
in X — p,, together the terms independent of X~ — yu,, we obtain the zero-order
approximation:

u (1) = Q0> = pp(0)exp (—tpzp,) — B T — exp TEMEL . (48)
Hy

(Naturally, we could have derived this result from formula (38) for R = 1/u,, if
we had neglected W}.)

We need not write the first-order expression {Q()>") at all, since this, when
averaged with respect to X, will vanish. The second-order term to {Q(#)) is

Q® = W 1o (0) i3 % % di' di' W,(t', ') exp (1) —

- t%\% dt” exp[— (1 —1") 3; dr' Wi(t', 1), (49)
0 s

Following this method, we can derive {Q(¢)) in the form of a series

Q) = LRUNP + QWP + <P + ... (50)

Of course, the calculations of high-order terms require more and more effort.
In particular, if we take Wi, W, in the Ornstein — Uhlenbeck form, i.e. if

Wiy, 1) = oz exp(—lt, — bl %), (51
W, (1), 1) = oy exp(—|t, — 1] %), (52)

we can easily accomplish the integrations (according to formula (49)) in quadra-
tures:

et _ 2 1 i
%%&\&‘ﬁen Enmm%Tl:ln L, (53)
0 JO

X, Hy

% dr” exp[—(1 — EEL dr Wy(t', 1) =
0 "

H.QM” wx_l [1 —exp(—tu .t

v :&é??li_w (54)
ns \Hr e+ Ur
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. CONCLUDING REMARKS

The simple RC-chain (Fig. 1) represents a rudimentary example of a kind of
problems which was and continues to be of considerable interest to electronics.
In the present paper, I have considered, having followed the author of Ref. [1],
the RC-chain under the assumption that the source voltage V; has been defined
as a stationary Gaussian process. Frankly speaking, however, the gaussianity of
Vs need not be required at all: owing to the linearity of egs. (5), (34) and (42),
our calculations would not have changed essentially if we had admitted some
non-gaussianity, but still stationarity, of the process V(t). (Complications
would only arise in calculations of third-order and higher-order correlation
functions of V,(¢) or 0(2).) On the other hand, if we had not taken 1 /Rand 1/C
as the (stationary) Gaussian processes (or as constants), we should have got
serious formal troubles.

I have shown, in constrast to Ref. [1], that if one of the parameters 1/R, 1/C
is kept constant whilst the second is taken as a stationary Gaussian process, the

the RC-chain can be analysed in a non-perturbative way. I have also suggested

Stochastic problems due to electric circuits were well elucidated in many
books (e.g. [8], 9. Cognate stochastic problems were solved, e.g. in mono-
graphs [10], [11]. When confronted with these, Adomian’s monograph [1] (com-
plementing them to a certain extent) may be rated quite favourably (despite the
interpretative slip in one of jts paragraphs which had provoked me into writing
the present paper).

Nevertheless, a moral of the story described in the present paper should be
drawn (and I would like to address it to some of our younger colleagues) as

actually mean.
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O CTOXACTUYECKUX RC-UENSAX

Cdopmynuposana cToxactuueckas TeOpHas [UIA IJIEKTPHYECKHX kﬁungnm c :na(oamsxoz
Hanpsokesus V(t), COCTOSIHIE KOTOPOFO MOXKHO OIIHCATh KAK CTaIMOBaPHbIHA raycCOBCKHI npouece
tuna OpHwiTaitd — Y nenbeka. [posomumocts 1 /R(t) n obparHas emkocTs | [1C@) Eonz_uwvs.
BaroTCs TUbO Kak cToxacTuyeckue GyHKIMM (cTauMonapHas rayccosckas e«:x:ﬁc OpHuitaity —
VnenbexoBckoro THNa), Ju6O Kak MOCTOSHHAA. IToxaszano, kak MaTeMaTHYecKHil anau3 RC-
KOHTYPOB MEHSETCA B TPEX Cry4asx: |. xoraa R croxacTuyno ¥ C MOCTOSHHO; 2. koraa R [IOCTOSH-
HO ¥ C cToxacTHyHo; 3. koraa R 1 C UMEIOT CTOXACTHYECKOe nosenenue. [Tokasano, yto B NEPBHIX
ABYX Cly4asix (3TO 03HAYACT JIMGO HETPUBHAIBHbIE MOMEHTHI HATIPSKCHUSA B xomnn:omqowo. ::mo
€0 3apsibl) Pe3yILTATH! MOKHO NOJNY4HTDb, HE TOPHUMEHAS TEOPHIO BO3MYIUICHMIA.
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