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THE OZH-U:SHZM~OZ>H ANDERSON MODEL.:
ANOMALY N THE BAND CENTRE

MARKOS§ p. v Bratislava

Weak disorder €xXpansion of the Lyapunov €xponent y of an electron in the one-

L INTRODUCTION

The problem of the band-centre anomaly of the Lyapunov €xponent y(E) in
the one-dimensional (1D) Anderson mode] is of interest since the numerica]
S.ola of Czychol et al. [1]. They found that for a system with 3 diagonal
disorder (DD) the nondegenerate weak disorder €xpansion ( WDE) of LE,
broposed by Thouless [2] does not work in the neighbourhood of E=0
(band centre). This discrepancy has been explained by several authors, and the
:A._o value of LE has been found in [3—6]. It has been shown that in the
neighbourhood of £ = 0 y depends only on the disorder A and on the ratio

3

Re/(E=0)=0in agreement with the results published previously [10—16).
The calculation of the higher moments of o=y— i7/2 confirms that alj even
moments of o diverge as £ — 0.

2. THE WEAK DISORDER mx1>2m—OZ-U~>OOZ>~. DISORDER

We start with the Hamiltonian

muM§+C?.iavéjr5+»Mm=_=v§_ (M

where e, are random independent energies with zero mean value. From ( 1) the
set of equations for the wave function in the sjtes s can be written

F1(E) + (e, — E) W(E) + £(E)=0. 2
The Lyapunov exponent is defined as [4]
X@uaoﬁc?_\évu>Fﬁ Z,M_omgt\ﬁ. 3)
From y the density of states can be found as [4]
OIm p(E
o8 ~ - SIE) @
For 1 = 0 egs. (2) have the trivia] solution
$(E) = 17" = exp (ign),
where the energy £'= 2.cosq, and ¢ = exp (—ig).
For 2 # 0 we substitute the Ansatz
FE) =t exp (&), (5)
then (2) can be rewritten into the reccurent formula
Tns 1 =log[l + 2°(1 — exp(~q,)) — the,], (6)

5\:0&0 Cny = W:+_ - Wx =Vosi — ~Q

For E + 0 one can expand the right-hand-side of (6) into the power series in
4, 0,. Supposing (o> ~ 2% and keeping only the terms proportional to 12, we
obtain
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Tna1 = —the, — A2 4 5 42 o, (1 + 192, (7)
Averaging (7) gives
ol - ) = —at?2 — oyt (1 + 132, (8a)
where o, = (o), o = 6,5, a = A% e?.
Squaring both sides of (7) and averaging gives
(1 — 1% = gs2. (8b)
From (8a, b) one obtains

a g - a 9
2(1 — 2 8(1 - EY4)’ )

i.e. the result of Thouless [2].

o= —

3. THE BAND-CENTRE ANOMALY

As E—0, €q. (8b) gives the singularity of 0, ; to study this situation more
properly, let us substitute

Then E = ax. (10)

= —i(l + az), z = ix/2,
which transforms (7) into
On+1=—0, +log[l — 2az(exp(c,) — 1) +
i(1 +a~§$.oxv€.=vr ()

€xpanding the right-hand side of (11) into the power series in A, and keeping all
terms proportional to A%, we obtain

Q.=+_ = 'Q.= - NQNﬁOxU AO.:V - mu + _.\MN:.GXUAQMV +
+a-exp(20,)/2 + 0(43). (12)

N N H
QH» Q.v% +M FQsANslANVM (12.1)
4 m=2m!

where o, = o7, o, =1, 0, = 0, and
o, {1 — T:slm.al:s.ﬁs.wlsﬁ =
I6

SQ:I:Q LISANSI 1)

”QAI~VS W' N N O-SI_WI*:
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k=1

§.$+N§% m=23 .
(12m)

The most important consequence of egs. (12) is the fact that near the band centre
all o,,, behave as A°. Indeed, eq. (12.2) gives

(4 -42)-a~a-[—1+ o]

so that
1

4z—1)

O-N o~

Similarly, eq. (4-2m) gives
4-(m*> — mz)-a-q,, ~ “Om-n a-mm— 1)+ .

and so a,, ~ A° too. For the odd moments we obtain Oom+1 ~ A%, hence their
behaviour is “normal”.

From this point of view, eq. (12.1) gives an explanation of the anomaly of y
near the band centre: to receive y up to the 2nd order in A, we have to calculate
all even moments G2, UD to the order zero,

Onmitting all odd terms (proportional to 2%), we rewrite the system (12m) into
the form

Toml(dm* — dmz) = —m(2m — 1o, ,+
2 mz 2%
4 — -m(k + 2m W 13m
el QNiLANTr D! @k +2) ) (3
Taking
O =@, + B, -z, m=0,1,2, .. (14)
We obtain two systems of linear equations
| da= -3, 15
AB= Ba. (k)
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115385 1.012204
114362 1.014660
114250 1.015025
114238 1.015073
114237 1.015079
-114237 1.015080
-114237 1.015080

i —0.317735 —0.427581
2 -148466 -300065
3 —0.076701 —0.189805
4 041524 116965
§ ~0.023099 —0.071418
6 013080 043450
7 —0.007500 —0.026397
8 004341 -016031
9 —0.00253] —0.009736
10 001484 -005915

4. OFF-DIAGONAL DISORDER

The method presented in§§2, 3 may be applied also to the system with ODD.
Now the Hamiltonian reads

mum?;_ic@Iin_? (16)

.E:Qm B,=1+ Av,, and v, are the random independent variables. For simplic-
1y we mznvo.mm the probability distribution P(v,) such that P(lv,| > 1/1) = 0.
The equations for the vawe function now read

@.ﬁ.&ilmmﬂ.f\w;.ﬂn_ﬂo. :.C
Using (5) we obtain

Gertlogh . =log{l + 71 — Xp(=0)] ~ 1> A-v, exp(~a)).
(18)

Apart from the term logB,,, on the left-hand side, the exponential factor
exp(—a,) in the last term makes the only difference between €gs. (6) and (18).

For energies far from the band centre we expand (18) as
Onv1t Ay — A%07 2 = 126, — 121 + ) 6})2 — ’ Av, —
— A2 1% £ A1 + ) o,u,.
Averaging (19) we obtain

o(l — 13 = m (-4 — m (I + )0 — A1 + ) <o0)

with b = A%(p?). Multiplying (19) by v, , | and averaging gets
ALG, 1D = —b.
Finally, for o, we obtain from (19)
ol -t =1+ 1%p - 2°Aa,0,>.
The system (20)—(22) has the solution
_1+3
1 -
_ -4y

O=——0__ p
2(1 — 22

b

1%

Eq. (24) is equivalent to the formula (45) from [9].

(19)

(20

(21)

(22)

(23)

(24)

From (23) we see that for £ — 0 (t > —i) o, again diverges, and so relation

(24) holds only for energies far from the band centre. For

E = bx
we have
t=—i(l + b2)

and from (23) we obtain the leading term of o,
QN \(N l_.

Thus, as well as in the DD-case, o, ~ b°.
Substitution of (25), (26) into ( 19) gives
Gns1+ 1086, = —0, + log[B, — 2bz[exp(a,) — 1]
from which we obtain
0= —bz[{expa, — 1],
z-{0,-expag,> = 1 + 0(b). .

(25)

(26)

(27)

(28)

(29)
(30)
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,:Ew.. {o,-exp(0,)> diverges as ; 0, and we cannot construct the system of
€quations similar to that for DD.

m:u&:cmsm z=01in (28) we find directly

O‘:+_+~Omm:+_”'0ﬂu+_omm: AW—V
S0 that
o(z=0)=0 32)
for any disorder, as referred to also in ( 10)—(15).
Squaring and averaging of (31) gives

(Gl 1> =<y = 4-{Clog? By — <log gy, (33)
where we used the identity
o, log By = —Clog gy + Clog B, (34)

From (33) we have
(o> ~4n for 7=y (35)

In this way we can find similar anomalies for all (o> (z = 0). Moreover, from
(18) we find

{exp(a,)> ~ T@Nv . A%vg (36)
as B ><By =1, {expo,> grows exponentialy with ».
5. CONCLUSION

<<m. Eomwioa the WDE of the Lyapunov eXponent of the electron in the
o.:?a_Bn:m_o:m_ Anderson mode] with both a diagonal and an off-diagonal
disorder. In the neighbourhood of the band centre, we analysed the anomaly of
LE y: for the case with the diagonal disorder we derived the System of linear

Anomalies, similar to the band-centre anomaly, discussed in this paper, arise
also in the generalized one-dimensional Anderson mode] [19], and in any
quasi-one-dimensional Anderson model [8]. In the last case there are, besides the
anomalies g = 7/2, also the anomalies of expansion in the neighbourhood of the
energies caused by the so-called accidental degeneracy [8]. It can be shown
[8, 19, 20] that in the neighbourhood of the corresponding “critical” energy E,
the LE are functions only of Land x = (E— E)/A% We hope that for the cases
where y(x)is an analytical function of X, we can generalize the method presented
in this paper, and find the “true” values of all the corresponding LE.
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