STRUCTURE AND Na⁺ TRANSPORT IN BOROSILICATE GLASSES WITH A HIGH CONTENT OF Na₂O (\geq 10 mol%) — STUDIED BY ²²Na TRACER DIFFUSION AND CONDUCTIVITY MEASUREMENTS

KAPS CH.,1) KAHNT H.,1) Jena

The energies $E_{A,D}$ and $E_{A,\sigma}$ increase with decreasing Na₂O content in the glasses, $E_{A,D} \ge E_{A,\sigma}$. The energy $E_{A,D}$ corresponds to the movement of the individual ions (²²Na), influenced by the structure of the glass network. The energy rises with increasing connectivity CN, but shows a distinct sensitivity to structural units with NBO. No comparable effects are observable for $E_{A,\sigma}$. The value of $E_{A,\sigma}$ is a biunique function of CN. The conductivity is relatively insensitive to structure due to a dominant influence of a cation—cation interaction, depending on the Na⁺ density C_{N} .

I. INTRODUCTION

Oxide glasses with high content of alkali oxide are important materials for solid-state electrolyte systems and for ion-exchange techniques generating structures with a modified refractive index for the integrated optics. In glassy solids of the system Na₂O—B₂O₃—SiO₂ the network modifier oxide Na₂O simultaneously causes changes in the Na⁺ density (concentration c_{Na}) and in the network structure also. The charge of the Na⁺ ions can be compensated either by nonbridging oxygen (NBO) from structural units like SiO_{3/2}O⁻ and BO_{2/2}O⁻ or by the charge distributed in larger groups without NBO such like BO⁺_{4/2}. The aim of the present investigation consists in an attempt to separate the specific influence of the network structure and of Na⁺ density on the ionic transport. Fig. 1 indicates the chemical composition of the glasses. All substitution rows start in the disilicate glass NO (Na₂O × 2SiO₂) with a layer-like structure (connectivity CN = 2). The value of CN can be estimated approximately by

 $CN = 3 - c_{\text{NBO}}/c_{\text{NF}}$ for these compositions with a low B₂O₃ content (c_{NBO} is deduced from [1], c_{NF} represents the concentration of former cations of the network; Si, B).

Fig. 1.

II. EXPERIMENTAL

The Na⁺ transport was characterized by (1) ²²Na tracer diffusion studies (D^* self-diffusion, γ residual activity technique, $50 \le A \le 100$ kBq) and by (2) conductivity measurements (σ_{dc} from impedance spectroscopy, $10^{-3} \le f \le 10^5$ Hz). The ARRHENIUS parameters ($E_{A,D}$, D_0 and $E_{A,\sigma}$, σ_0) were calculated from the experimental data corresponding to eq. (1a, b).

$$D^* = D_0 \exp(-E_{A,D}/RT)$$
 (1a)

$$\sigma = \sigma_0 \exp\left(-E_{A,\,\sigma}/RT\right)$$

(1b)

A comparison of these values D^* and σ is possible in the concept of the HAVEN ratio H_R [2] (eq. 2).

$$H_R = D^*/D_\sigma \tag{2}$$

 $D_{\sigma} = \sigma(kT/c_{\rm Na}q^2).$

III. RESULTS AND DISCUSSION

The ARRHENIUS plot ($\lg D^*$ or $\lg \sigma$ vs 1/T) of the measured data gives straight lines for all glasses indicating defined activation energies according to eq. (1a) and (1b), resp. (see also [3]). The energies $E_{A,D}$ and $E_{A,\sigma}$ increase with

¹⁾ Department of Chemistry, Friedrich Schiller University, JENA, G.D.R.

decreasing Na₂O content in the glasses. However, for every glass we find $E_{A,D} \ge E_{A,\sigma}$. The HAVEN ratio is in the range of $0.20 \le H_R \le 0.45$ (300— 450°C). H_R increases with temperature.

Fig. 2.

electrolyte systems with $c_{\text{Na}} \gtrsim 0.5 \times 10^{22} \, \text{Na}^+/\text{cm}^3$. The present interpretation is a cation—cation interaction, depending on the Na⁺ density c_{Na} in these solid connectivity CN, but shows a distinct sensitivity to structural units with NBO in accordance with the recent results of the HAVEN ratio obtained from transition from SiO_{3/2}O⁻ to BO_{4/2} groups. This result demonstrates the enlarged $E_{A,D}$ is obtained corresponding to the movement of the individual ions ("Na), mental arrangement [4]. diffusion studies in an electric field (CHEMLA-experiment) with a new experiity is relatively insensitive to structure, because there is a dominant influence of the collective displacement of untagged ions (Na+) is determined. The conductiv-The value of $E_{A,\sigma}$ is a biunique function of CN. In conductivity measurements, interaction of Na⁺ with NBO. No comparable effects are observable in Fig. 2b. In this way, at the lines with constant Na⁺ densities c_{Na} (...) $E_{A,D}$ drops for the influenced by the structure of the glass network. $E_{A,D}$ rises with increasing the glass networks. From the tracer diffusion experiments (Fig. 2a) the energy Fig. 2 represents the dependence of $E_{A,D}$ and $E_{A,\sigma}$ on the connectivity CN of

REFERENCES

- [1] Dell, W. J., Bray, P. J., Xiao, S. Z.: J. Non-Cryst. Solids 58 (1983), 1.
 [2] Murch, G. E.: Solid State Ionics 6 (1987), 295.
- [4] Laborde, P., Kaps, Ch., Kahnt, H., Feltz, A.: Mat. Res. Bull., to be published. [3] Syed, R., Gavin, D. L., Moynihan, C. T.: J. Amer. Ceram. Soc. 65 (1982), C-129

Received June 6th, 1988

Accepted for publication July 18th, 1988

С ВЫСОКИМ СОДЕРЖАНИЕМ № (≥ 10 mol%) — ИССЛЕДОВАНИЕ СТРУКТУРА И Na+ ТРАНСПОРТ В БОРОСИЛИКАТНЫХ СТЕКЛАХ ПРИ ПОМОЩИ ²²Na ИНДИКАТОРНОЙ ДИФФУЗИИ и измерений проводимости

является относительно нечувствительной по отношению к структуре благодаря доминантчувствительность к структуральным единицам с NBO. Никаких сравнимых эффектов не ному влиянию катион—катионного взаимодействия, зависящего от Na^+ плотности c_{Na} . наблюдается для $E_{A,\sigma}$. Значение $E_{A,\sigma}$ является однозначной функцией CN. Проводимость турой стекла. Энергиа увеличивается с нарастанием связности СN, но показывает различную Энергиа $E_{A,D}$ соответствует движению индивидуальных ионов (22 Na), обусловленным струк-Энергии $E_{A,D}$ и $E_{A,\sigma}$ возрастают с уменьшением содержания $\mathrm{Na_2O}$ в стеклах, $E_{A,D} \geqslant E_{A,\sigma}$