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EFFECT OF HALL CURRENTS
IN THE HYDROMAGNETIC CONVECTIVE FLOW
THROUGH A HORIZONTAL CHANNEL

SANYAL D. C.,”" SAMANTA S. K.,” Kalyani

The object of the present paper is to study the effect of the Hall currents on the
hydromagnetic free and forced convection flow through a horizontal channel with
porous and moving conducting walls. Assuming the wall temperature to vary linearly
with distance, closed form solutions are obtained for velocity, induced magnetic field
and temperature. The behaviour of the velocity and the magnetic field is shown
graphically.

I. INTRODUCTION

The free convective flow of a conducting fluid past a semi-infinite plate has
been considered by Gupta [1] and others [2]. Gupta [3] also studied the
free and forced convective flow of an electrically conducting liquid assuming the
axial temperature variation along a wall. Majumdar et al. [4] and Rath et
al. [2] extended the above study by considering the effects of the Hall currents
on the flow. Such study finds application to the cooling of nuclear reactors.

This paper is concerned with the problem of the Hall effects in the free and
the forced convection flow of a conducting fluid through a horizontal channel,
the walls of which are porous, conducting and moving. Closed form solutions
are obtained for the velocity, the induced magnetic field and the temperature.
The behaviour of the velocity and the magnetic field are shown graphically. As
the results are very complicated, we omitted the numerical results for the
temperature.

II. FORMULATION OF THE PROBLEM

Let us suppose that an electrically conducting fluid flows between two ho-
rizontal porous walls at a distance of 2L apart. We take the x and y-axes along

" Department of Mathematics, University of Kalyani, KALYANI, West Bengal, Pin 741235
India

358

m:@ vn%ms&oc_mn to the walls with the origin midway between them. A strong
uniform magnetic field H, is applied parallel to the y-axis and we suppose that

. .@.
Emmx_m_wnomm:aomqma_ni % 1s constant. Then for a fully developed steady
x

laminar flow all physical quantities except temperture and pressure are functions
of y alone [1]. We therefore take the velocity and the magnetic field as [2]

v= Atu %cu SY H = Amﬁ N.Ncu NN..V“

where 9, is constant and represents the suction parameter.
The governing equations of motion are 2]

du op d%u dH
0% —=—F4u—= + p, Hy—=
chmv\ @.X tﬂxﬁw He 0 Q.w\ ) Aﬂmv
op I d
=TT 08— - p— (H + HY),
% S H 3 (H, = (1b)
do d’w dH.
0% — = p-—+ p Hy—=
o dy dy? He i1y dy > (Ic)
where g, is the value of the density ¢ at the reference temperature 7;, u the
coefficient of viscosity and 4. is the magnetic permeability. o is assumed to be
0z
zero, the motion being due to the eddy current velocity.
From Maxwell’s velocity. ‘
VX E=0, VxH=1J
and a modified Ohm’s law (including the Hall effects [5])
.\+W.\xtu o(E + y,vx H)
we get )
d’H, d’H, dH d
L v or Nuqs? chhv, (2)
dy dy dy dy
d’H, dH du | dH
_ , + W1- NN = O.twmmo —_ %o xvu ANUV
dy dy dy dy :

where E is the electric intensity, J the current density, w the electron Larmor
?m@:.a:o%, 7 the mean interval between the successive collisions of an electron
with ions and o is the electrical conductivity. In the above equations we have
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i 1 Iso the electro
neglected the slip effects between 1ons and neutrons and a n

ressure gradient. o
P Assuming a linear uniform temperature variation along the lower wall

— L in the form T = T, + Nx, where N is a constant, the temperature T

.w\ ol
inside the fluid can be taken as

T — T, = Nx + @(y). 3)
This, along with the equation of state

o= o[l — BT — )}, C))

where f is the coefficient of thermal expansion, gives from (1b) on integration
2
P = —ogy + agfNxy + ogBf @) dy — } p(H + H) + F(x). ()

Introducing the non-dimensional quantities

y L ol @ _p_ LdF
:HM, :HM»J “= P’ ax gV dx
H S P , M&H||L.||~.~. , ENHFNEONNNQV P = O, Vs
" op HVP, op, HovP, v
o BN %L
vP, v

v = u/o being the kinematic shear viscosity, we get from (1) and (2) (omitting
the bars)

Fu_ pdu ol gy (6a)
dn*  dn dn
do_pdo 4pdH_, (6b)
dn? dn dn
and
&H, + wt A, = RP, dd, _ alev (7a)
dn? dn? dng dn
_SH, | OH _du pp dH. (7b)
dn? dn® dn dn

@W@!k@+§~@lQ:NI_, (8a)

dn? dn dn
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2
&h_ RE dh__ 14U _—
dn’> 1+ierdy 1 +ierdy
where U=u +iw, h= H, + iH,.
The boundary conditions are
U=1U, S_@‘Txnc at n=1,
dn
u=10,, GNW\mI}Ho at p=—1, 9)
dn
where @,, @, are the electric conductance ratios of the walls n=1land n= —1,
respectively.
IIl. SOLUTIONS OF THE PROBLEM
Eliminating 4 between the m@:mmosm (8) we get
3 P 2 2
MEI»T +||4|ﬁ|c+TN b M ﬁwﬁ
dn® 1 +iwtldn? l+ior 1+ ietldy
RP,
+ G /e Nﬁ.us —G=0,
1 +iwt l +iot
the solution of which is
c P P 1
U=+ e+ ¢, + — [Pk2n? +
5, 2 3 »wm 30 7]
+ 2k, P, + kyP) ko + NQSN — k) P, + k,k,P), (10
where
B, B =3 (ky £ Vki — 4ky),
P =—1GRM?, P, = RM? + G,
ki=R(1+ M3), k,=RM}- M},
2
Y an
1 +iw7 1 +ior

Then the solution for the magnetic field # is otained from the equations (8a) in
the form
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RP, 1
h— ulT + (R = P)e"" + (R — P)e™" + AL 4= mv n’ +
o k, 2
LEJrEIm.MLE. (12
\anu \au Nﬂn

The constants ¢,, ¢,, etc. are obtained from (10) and (11) by using the boundary
conditions (9) in the following forms:

o = kyUs — koeye” — kpese® + MlL@FN + k2 + 2k, — 2ks) Py + Kyl + ko) Fi),
2

& = w (4K, P, + 2esPs — K2(U, — UDH(®B, + D™ +
+ (0P, — e (R = B) — 2{QRK,P, + k36) (&, — @) +
+ (2Rk,P, — k}G)(®, + @, + 2)} sinh P,

;= w:#_m + 2k,P, — kXU, — UM (®P, + De" +
+ (0,2, — 1)e "} (R — P) — 2{Q2Rk;P, + 3G) (@, — P) +
+ (QRk,P, — k2G)(®, + @, + 2)} sinh P,

o= (R — PY(@,P, — 1)e " + cs(R— P) (@B — e " —

P, RP, 2P,
Immm+qu§e~+:+ﬁmm_lw+.|flml_vﬁeﬁ:v,

k, 2 k2 k, k,
A = 22{(R — B)(@,P, + 1) + (R — P)(®,P, — 1)e” "} sinh P, —
— (R = P)(@,B, + 1)e” + (R — P)(®,, — 1)e” sinh P, (13)
Again, we can write [2]
U _ kG +E, (14)
dn

where = F(n, M, F,, R, o7) (j = 1, 2). Putting G = 0 and in (14) successively

AQ:VQ =1 AQ:VO =0
i

dU :
={—] . (15)
b A&:unc
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When Mh = 0, we define a critical value of G for the reversal of the primary flow
Uj

as

_h

A

AQvn:.:.n = A_@v
IV. ENERGY EQUATION

The equation of energy is

2 2 Q. 2 ~ m 2 A 2:
STy g 0T 4O [(@0) (G0f) 1 (40 (@
ot dy dy?  ogct\dy dy oocL\ dy dy
where k is the thermal diffusivity, ¢ the specific heat and T is the temperature

of the liquid. Using the expression for T as stated earlier, we can write the above
equation in a non-dimensional form as

2 du dUi dh dh
mmlwm@nm:|»%i|+mll% a7
dn? dn dndn  dndp

where P, is the Prandtle number,
3 -1
o=-2 =L mnEAWVN
NLP, ckNL® Q

and U, h are the complex conjugates of U, h, respectively.
Since the temperature of the lower wall is T; + Nx, the boundary conditions
for © are

D(L)
NLP,

o(1) = = N, (say) (18)

and
O(—1)=0.

The equation (17) can be solved by using the expressions for U and 4 given
in (10) and (12) and the boundary conditions (18). Want of space prevents us
from describing the calculation of the solution for the temperature.

V. NUMERICAL RESULTS

Figures 1 and 2 represent the natures of the velocity components  and @ and
the figures 3 and 4 represent those of the magnetic field components H,, H, for
different values of G and R. The continuous curves show the natures of different
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Fig. 1.
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-400- T —— 20
Fig. 3. Fig. 4
entities for G = 5 and the dotted curves give those when G = — 5. It is obvious

that a negative G and injection induce a flow and a magnetic field reversal while
a possitive G and suction prevent the same. Suction has a significant role in the
velocity and the magnetic field. It prevents the reversal of the flow and seems to
pull the induced magnetic field towards the upper wall, a role which is played
by a positive G.

For numerical calculations, we assumed that wt=1, U, =@ =1, U,=
=Q,=0,M=P,=1.
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BJIUAHUE TOKOB XOJLJIA HA H§v03>E=ﬁEOm KOHBEKTMBHOE TEUEHH
CKBO3b FOPM3OHTAJBHBIA KAHAJ

B nacTosineii pabote U3y4eHO BIMAHHE TOKOB XOJLi1a HA cBO0OOAHOE U BLIHYAICHHOE THAPOMAT -
HMTHOE KOHBEKTHBHOE TEUCHHME CKBO3b TOPH3OHTANBHBIA KaHAN ¢ ABHXYIIHMMCA [1OPUCTHIMHU
NPOBOIAAIIMMH CTeHKaMH. B paGoTe, Mpu MpPEMIOIIOKCHHH, YTO TEMIIEPATYPA CTEHOK MCHACTCH
THBeiiHO B 3aBHCHMOCTH OT PACCTOSIHUIL, OMYYEHB! B 3aMKHYTOI OpMe pellieHus JUIA CKOPOCTH,
MHYIIMPOBAHHOTO MArHUTHOTO 10N ¥ Temmepatypsl. [ToBenenue TeMnepaTypbl ¥ MarHUTHOTO
noJis u306paxeso rpadHUCCKH.
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