EXOTIC NATURE OF THE SCALAR G(1590) MESON¹⁾

LÁNIK, J.,2) Bratislava

It is shown that the properties of the GAMS G (1590) scalar meson can be reasonably explained if this state is approximately a half- and -half mixture of gluonium gg and quarkonium $q\bar{q}$ states.

I. INTRODUCTION

The scalar meson G(1590) (new name $f_0(1590)$) discovered by the GAMS group [1] at the IHEP, Serphukov, has immediately been interpreted [2] as a into the "gluonium rich" channels $\eta\eta$ [1] and $\eta'\eta$ [3]. However, such an $f_0(1590 \to K\bar{K}$ decays [1] since it has been shown [4] that despite of naive width of the 0^{++} gluonium $\sigma \sim gg$ with the mass m_σ decaying, for instance, into thus σ is unobservably wide for $m_\sigma \gtrsim 1$ GeV. Moreover, if $f_0(1590)$ were gg one $f_0(1590) = 0(10^{-3})$ [7], which is also probably inconsistent with the bound $f_0(1590) = 0(10^{-3})$ [7], which is also probably inconsistent with the bound $f_0(1590) = 0(10^{-3})$ [7], which is also probably inconsistent with the bound

These discrepancies were the reasons to interpret $f_0(1590)$ as an SU(3)_f singlet quarkonium $S_0 \sim (1/3)^{1/2} (u\bar{u} + d\bar{d} + s\bar{s})$ (or, more generally, as a mixture of σ and S_0) [9] and/or as a hybrid $q\bar{q}g$ state [10]. We shall show here that the properties of $f_0(1590)$ can be reasonably explained if this state is approximately a half- and -half mixture of σ and S_0 .

II. THEORETICAL ASPECTS OF THE PROBLEM

In order to see how much a picture of $f_0(1590)$ arises let us recall briefly the results of a detail phenomenological analysis [11] of the couplings of σ as well

[&]quot;) Partly based on the author's talk given at the International seminar "Quarks '88", TBILISI, 1988.

²⁾ Laboratory of Theoretical Physics, JINR, DUBNA, USSR. Permanent address: Fyzikálny ústav CEFV SAV, Dúbravská cesta 9, 842 28 BRATISLAVA, Czechoslovakia

as $q\bar{q}$ scalar nonet mesons S_i (i=0,1,...,8) to the pairs of the pseudoscalars. This analysis was based on the assumption [12] that effective couplings of the 0^{++} $q\bar{q}$ nonet mesons S_i (i=0,...,8) to the pairs of the pseudoscalars Φ_i (i=0,...,8) are of the following forms

$$\mathcal{L}_{S\phi\phi}(x) = \frac{\gamma}{f_0} d_{kij} \tilde{S}_k(x) \left(\partial_{\mu} \Phi_i(x) \right) \left(\partial^{\mu} \Phi_j(x) \right), \tag{1}$$

where $f_0 = -f_\pi (f_\pi = 93 \text{ MeV})$ is the pion decay constant), γ is a parameter and $d_{kij} = (1/4) \text{ Tr } (\{\lambda_i, \lambda_j\} \lambda_k)$ with $\lambda_i, \lambda_j, \lambda_k$ (i, j, k = 0, ..., 8) being the Gell-Mann λ matrices normalized to $\text{Tr } (\lambda_i, \lambda_j) = 2\delta_{ij}$. Here $\tilde{S}_k(x)$ (k = 0, ..., 8) are quantized parts of the $q\bar{q}$ scalar fields $S_k(x)$ with VEV's removed, i.e. $S_k(x) = -\langle 0|S_k|0\rangle + \tilde{S}_k(x)$, where $\langle 0|S_k|0\rangle = (3/2)^{1/2} f_0 \delta_{k0}$. The couplings (1) have decaying into the pseudoscalar mesons. For example, the $K_0^{\pi}(1350) \to K\pi$ decay of γ from the interval

$$0.25 \le \gamma \le 0.35.$$

3

The effective Lagrangian of the form

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \sigma)^2 + \frac{1}{4} \operatorname{Tr} (\partial_{\mu} \mathcal{U} \partial^{\mu} \mathcal{U}^+) - V + \mathcal{L}'$$
 (3)

has been constructed [11] so as to give (1).

Here we neglect the quark mass term and assume the spontaneous breaking of chiral symmetry. The pure gg field $\sigma(x)$ and $q\bar{q}$ 3 × 3 matrix field $\mathcal{U}(x)$ are parametrized as follows [4]

$$\sigma(x) = \sigma_0 \exp\left(\frac{\tilde{\sigma}(x)}{\sigma_0}\right) \tag{4}$$

with $\sigma_0 = \langle 0 | \sigma | 0 \rangle$, and [14]

$$\mathcal{U}(x) = [\exp(i\lambda_j \boldsymbol{\phi}_j/2f_x)](\lambda_i S_i) [\exp(i\lambda_j \boldsymbol{\phi}_j/2f_x)], \tag{5}$$

where $\Phi_j(x)$ (j=0,...,8) and $S_i(x)$ (i=0,...,8) are the fields of the pseudoscalar and scalar $q\bar{q}$ mesons, respectively. The potential V is an arbitrary chiral $U(3) \times U(3)$ symmetric function of σ and $\mathscr U$ and is assumed to obey the trace anomaly equation [4, 11, 12]

$$(\Theta_{\mu}^{\mu})_{m} = 4V - \sigma \frac{\partial V}{\partial \sigma} - S_{i} \frac{\partial V}{\partial S_{i}} - \Phi_{i} \frac{\partial V}{\partial \Phi_{i}}, \tag{6}$$

where the anomalous trace $(\mathcal{O}_{\mu}^{\mu})_{an}$ of the hadronic energy-momentum tensor of QCD is given in the following from [15]

$$(\Theta^{\mu}_{\mu})_{aa} = -\frac{9}{8} \frac{a_S}{\pi} G^a_{\mu\nu} G^{\mu\nu}_a, \tag{7}$$

where $G^a_{\mu\nu}$ are the gluonic field strength tensors. Thus, the dimension 4 operator (7) should play the role of an interpolating field for the gluonium σ , i.e. we assume the following identification [4]

$$(\Theta_{\mu}^{\mu})_{an} = -\frac{9}{8} G_0 \left(\frac{\sigma(x)}{\sigma_0}\right)^4 = -\frac{9}{8} G_0 \left(1 + \frac{4\tilde{\sigma}(x)}{\sigma_0} + O(\tilde{\sigma}^2)\right),\tag{8}$$

since we ascribe a conventional dimension 1 to σ and \mathscr{U} . Here $G_0 = \langle 0 | (\alpha_S / \pi) G_{\mu\nu}^a G_{\mu\nu}^{\mu\nu} | 0 \rangle$ is a gluon condensate with "standard" values (see, e.g. [16] and (6) \mathscr{L}' in (3) is of dimension 4 and represents a derivative coupling needed to obtain (1) from (3). It is required [11] that \mathscr{L}' being a combination of the simplest derivative terms like $K_1 = (3/2) [\text{Tr}(\mathscr{U}\mathscr{U}^+)]^{-1} \text{Tr}(\partial_\mu \mathscr{U} \partial^\mu \mathscr{U}^+ \mathscr{U}\mathscr{U}^+)$, etc. S_i and Φ_i in (3) obtained already from (1/4) $\text{Tr}(\partial_\mu \mathscr{U} \partial^\mu \mathscr{U}^+)$ before adding \mathscr{L}' . Then besides (1) (what, in fact, was required in the construction of \mathscr{L}') we also get [11]:

$$\mathcal{L}_{\sigma\phi\phi}(x) = \frac{1-\gamma}{\sigma_0} \tilde{\sigma}(x) (\partial_{\mu} \Phi_i(x))^2.$$

9

Expanding the potential V in terms of the fields \tilde{S}_i , Φ_i and $\tilde{\sigma}$

$$V = V_0 + \frac{1}{2} M_{\sigma\sigma}^2 \tilde{\sigma}^2 + \frac{1}{2} M_{00}^2 \tilde{S}_0^2 + M_{\sigma 0}^2 \tilde{\sigma} \tilde{S}_0 + \dots$$
 (10)

and combining (10) with (6) and (8) we find

$$\sigma_0^2 M_{\sigma\sigma}^2 - \frac{3}{2} f_0^2 M_{00}^2 = \frac{9}{2} G_0,$$
 $\sigma_0 M_{\sigma0}^2 + \sqrt{\frac{3}{2}} f_0 M_{00}^2 = 0.$

(11)

Instead of $\tilde{\sigma}$ and $\tilde{S_0}$ we shall use physically more relevant fields G and ε defined as follows

$$G = \tilde{\sigma}\sin\Theta + \tilde{S}_0\cos\Theta,$$

$$\varepsilon = \tilde{\sigma}\cos\Theta - \tilde{S}_0\sin\Theta,$$
(12)

where the mixing angle Θ is given by

$$\tan 2\Theta = -\frac{2M_{\phi 0}^2}{M_{\phi \sigma}^2 - M_{00}^2}.$$
 (13)

The couplings $G_{\phi\phi}$ and $\varepsilon_{\phi\phi}$ can easily be deduced from (1), (9) and (12). They are

$$\mathcal{L}_{G\Phi\Phi}(x) = g_{G\Phi\Phi}G(x) (\partial_{\mu}\Phi_{i}(x))^{2},$$

$$\mathcal{L}_{E\Phi\Phi}(x) = g_{E\Phi\Phi}E(x) (\partial_{\mu}\Phi_{i}(x))^{2},$$
(14)

where

$$g_{c\phi\phi} = \frac{1 - \gamma}{\sigma_0} \sin \Theta + \sqrt{\frac{2}{3}} \frac{\gamma}{f_0} \cos \Theta,$$

$$g_{c\phi\phi} = \frac{1 - \gamma}{\sigma_0} \cos \Theta - \sqrt{\frac{2}{3}} \frac{\gamma}{f_0} \sin \Theta.$$
(15)

Analyzing couplings (15) within the $1/N_c$ counting we have shown [11] that regardless of a value of Θ the heavier meson of the pair G and ε plays the role of an effective quarkonium while the lighter one is an effective gluonium since its coupling to $\Phi\Phi$ is $O(1/N_c)$ as it should be for a gluonium [6].

The quark model and the recent QCD lattice calculations [17] (taken seriously despite of existing reservations) suggest that the masses M_{00} and $M_{\sigma\sigma}$ of S_0 and σ , respectively, are approximately equal to each other and they have values around 1.3 GeV, i.e. we assume (for more discussions, see [11]):

$$M_{00} = M_{\sigma\sigma} = M \approx 1.3 \text{ GeV}. \tag{16}$$

Then $M^2f_0^2 \approx 0.015 \text{ GeV}^4$, which coincides with the "standard" values of G_0 [16], and thus we have approximately $M^2f_0^2 = G_0$. Combining this with (11) we find

$$\sigma_0 = \sqrt{6f_0} \tag{17}$$

and (after diagonalizing the squared mass matrix):

$$M_G = \sqrt{\frac{3}{2}} M \approx 1590 \text{ MeV},$$

$$M_c = \frac{1}{\sqrt{2}} M \approx 920 \text{ MeV},$$
(18)

where we have used the value (16) for M. Labelling here the lighter meson as ε we must consistently choose $\Theta = -45^{\circ}$ in (12), i.e.

$$G = \frac{1}{\sqrt{2}} (\tilde{S}_0 - \tilde{\sigma}),$$

$$\varepsilon = \frac{1}{\sqrt{2}} (\tilde{S}_0 + \tilde{\sigma}).$$
(19)

It is evident from (1), (9), (14), (15) and (17) that for $\Theta = -45^{\circ}$ and $\gamma = 1/3$, e.g. the decays of the heavier state G into $\pi\pi$ and $K\bar{K}$ are automatically suppressed due to " $\Phi\Phi$ destructive" nature of G (19). On the other hand, its lighter companion ε (19) is " $\Phi\Phi$ constructive", so the decay $\varepsilon \to \pi\pi$ should be enhanced. From (15), (17) and with $\Theta = -45^{\circ}$ we get

$$g_{c\phi\phi} = \frac{3\gamma - 1}{2\sqrt{3}f_0},$$

$$g_{c\phi\phi} = \frac{1 + \gamma}{2\sqrt{3}f_0}.$$
(20)

To have a more realistic picture in which the ninth pseudoscalar meson η' has a nonzero mass m_0 the so-called axial U(1) symmetry of (3) must be broken. Within the effective Langrangian approach [14] this can be done explicitly by adding to (3) a term (see, e.g. [18] and references therein)

$$\mathcal{L}_{\Psi(1)} = \frac{3}{m_0^2 f_\pi^2} Q^2 + \frac{i}{2} Q \operatorname{Tr} (\ln \mathcal{U} - \ln \mathcal{U}^+), \tag{21}$$

where $Q = (a_s/16\pi) \, \varepsilon_{\mu\nu\rho\tau} G_a^{\mu\nu} G_a^{\rho\tau}$ and

$$m_0^2 = m_{\eta'}^2 + m_{\eta}^2 - 2m_K^2 \approx 0.73 \text{ GeV}^2$$
 (2:

obtained from a fit of the pseudoscalar meson masses. However, having dimension 8 the first term in (21) is not consistent with (6), so instead of (21) one has to add to (3) the following term [19]

$$\mathcal{L}'' = \frac{3}{m_0^2 f_\pi^2} Y(\sigma, \mathcal{U}) Q^2 + \frac{i}{2} Q \operatorname{Tr}(\ln \mathcal{U} - \ln \mathcal{U}^+), \tag{23}$$

where Y is a chiral invariant function of σ and \mathscr{U} , and is of dimension — 4. One can choose, e.g.:

$$Y(\sigma, \mathcal{U}) = \alpha \frac{\langle 0|f(\mathcal{U})|0\rangle}{f(\mathcal{U})} + (1 - \alpha)\left(\frac{\sigma_0}{\sigma}\right)^4, \tag{24}$$

where α is an arbitrary parameter and $f(\mathcal{U})$ is the $U(3) \times U(3)$ invariant function of the field \mathcal{U} and is of dimension 4. Eliminating Q(x) from (23) by the use of equations of motion and expanding (24) in terms of fields \tilde{S}_i and $\tilde{\sigma}$ we find the following couplings $S_0 \Phi_0 \Phi_0$ and $\sigma \Phi_0 \Phi_0$:

$$\mathcal{L}''_{S_0 \Phi_0 \Phi_0}(x) = -2a \sqrt{\frac{2}{3}} \frac{m_0^2}{f_0} \widetilde{S}_0(x) \Phi_0^2(x),$$

$$\mathcal{L}''_{\sigma \Phi_0 \Phi_0}(x) = -2(1-a) \frac{m_0^2}{\sigma_0} \widetilde{\sigma}(x) \Phi_0^2(x).$$
(25)

We see from (23)—(25) that (1-a) measures the strength of coupling between gluonic degrees of freedom σ and Q^2 (or, between gluonium σ and the "gluonium rich" channel ϕ_0^2), and such a coupling dominates if $|a| \leqslant 1$. In order to estimate a we introduce the $\eta\eta'$ mixing:

 $\boldsymbol{\Phi}_0 = \eta' \cos \boldsymbol{\Theta}_{\eta \eta'} - \eta \sin \boldsymbol{\Theta}_{\eta \eta'}$

$$\Phi_8 = \eta' \sin \Theta_{\eta \eta'} + \eta \cos \Theta_{\eta \eta'}$$

(26)

where $\Theta_{\eta\eta'}$ is the $\eta\eta'$ mixing angle. Then, combining (14), (19), (20), (25) and (26), we get, e.g.

$$\frac{\Gamma(G \to \eta \eta')}{\Gamma(G \to \eta \eta)} = \frac{8}{\left[(A+2) \tan \Theta_{\eta \eta'} \right]^2} \frac{P_{\eta \eta'}}{P_{\eta \eta}},$$

$$\frac{\Gamma(G \to K\bar{K})}{\Gamma(G \to \eta \eta)} = 4 \left(\frac{A}{A+2} \right)^2 \frac{P_{K\bar{K}}}{P_{\eta \eta}},$$
(27)

where

$$A = \frac{1}{2} \frac{3\gamma - 1}{3\alpha - 1} \frac{M_G^2}{m_0^2 \sin^2 \Theta_{\eta \eta'}},$$

and the ratios of the corresponding phase spaces are $P_{\eta\eta}/P_{\eta\eta}=0.43$ and $P_{KR}/P_{\eta\eta}=1.08$. Using, for instance, $\gamma=0.3$ (2), $\Theta_{\eta\eta'}=-18^{\circ}$, A=1.1, $m_0^2=0.73~{\rm GeV^2}$ (22) and $M_G=1.59~{\rm GeV}$, we predict the following partial widths of G from (14), (20) and (27)

$$\Gamma(G \to \pi \pi) \approx 11 \text{ MeV}, \qquad \Gamma(G \to K\bar{K}) \approx 12 \text{ MeV},$$

$$\Gamma(G \to \eta \eta) \approx 22 \text{ MeV}, \qquad \Gamma(G \to \eta \eta') \approx 75 \text{ MeV},$$
(28)

which is in a good agreement with experiment [1,3] if we identify $G \equiv f_0(1590]$. We also find $\alpha \approx -0.22$, i.e. the dominant decays of $f_0(1590)$ into $\eta\eta$ and $\eta\eta'$ [1,3] are mainly due to the coupling of σ contained in G (19) to Φ_0^2 [2].

The production of G mesons in the radiative J/Ψ decays can be estimated on the basis of the Euler—Heisenberg effective Lagrangian for the gluon-photon interactions. This gives, e.g. [7]

$$\frac{\Gamma(J/\Psi \to \gamma G)}{\Gamma(J/\Psi \to \gamma \eta')} = \frac{9}{64} \left| \frac{\langle 0 | a_S G^a_{\mu\nu} G^{\mu\nu}_a | G \rangle}{\langle 0 | a_S G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a | \eta' \rangle} \right|^2 \left(\frac{P_G}{P_\eta} \right)^3, \tag{29}$$

where $P_G/P_{\eta'}=0.81$. Using $M^2f_0^2=G_0$ and combining (7), (8), (17)—(19) we obtain

$$\langle 0 | a_S G^a_{\mu\nu} G^{\mu\nu}_a | G \rangle = \frac{4\pi}{3\sqrt{3}} f_\pi M_G^2.$$
 (30)

Then with the analogous estimate [7]

16

$$\langle 0 | a_S G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a | \eta' \rangle = \frac{4\pi}{3} \sqrt{\frac{3}{2}} f_\pi m_{\eta'}^2,$$
 (31)

we predict $BR(J/\Psi \to \gamma G) \approx 0.13 BR(J/\Psi \to \gamma \eta') \approx 5.5 \times 10^{-4}$, that agrees with the bound [8] $BR(J/\Psi \to \gamma f_0(1590)) < 6 \times 10^{-4}$.

While the meson $G \equiv f_0(1590)$ is " $\pi\pi$ constructive" companion ε (see (18)—(20)) has the large decay $\varepsilon(920) \to \pi\pi$ wioth the width $\Gamma(\varepsilon(920) \to \pi\pi) \approx 360$ MeV. The meson $\varepsilon(920)$ is a wide effective 0^{++} gluonium [11] and maybe, it has been seen recently by analyzing the AFS data obtained at the CERN's ISR [20]. On the other hand (as we have shown here) the analogous exotic state G (19) playing the role of an effective SU(3), singlet scalar quarkonium (like η' for pseudoscalars) [11] should be identified with the GAMS $f_0(1590)$ meson [1, 3], discovered at the IHEP, Serphukov. It is worth to remark here that within the present picture the decay $f_0(1590) \to 4\pi^o$ [21] is expected to go dominantly through $f_0(1590) \to \pi^o \pi^o \varepsilon(920)$ with an immediate decay $\varepsilon(920) \to \pi^o \pi^o$. Since, e.g., on the basis of (28) the width of $f_0(1590)$ when decaying into two pseudoscalars is only a hlaf of its full width [1, 3, 13] we may expect the branching ratio for the presumably dominant decay $f_0(1590) \to \pi\pi\varepsilon(920) \to 4\pi$ to be about 50% in agreement with experiment [21].

III. CONCLUSION

In conclusion we note that the scalar $q\bar{q}$ octet members S_i (i=1,...,8) with couplings (1) correspond probably to the experimental state $a_0(980)$ and/or $a_0(1400)$ [22], $K_0^*(1350)$ and $f_0(1300)$ [13]. The meson $f_0(1300)$ is approximately the state $S_8 \sim (1/6)^{1/2}$ ($u\bar{u} + d\bar{d} - 2S\bar{S}$) and due to (1) it has a dominant decay just into $\pi\pi$ as the experiment requires [13]. For example, using the mass $M_8 = 1.3$ GeV for $S_8 \equiv f_0(1300)$ and $\gamma = 0.3$ as before we estimate $\Gamma(f_0(1300) \rightarrow \pi\pi) \approx 223$ MeV and $\Gamma(f_0(1300) \rightarrow K\bar{K}) \approx 50$ MeV from (1). The decay $S_8 \rightarrow \eta\eta$ is even more suppressed than the decay $S_8 \rightarrow K\bar{K}$ if the mixing (26) is taken into account. In fact, combining (1) and (26) we find

$$\frac{\Gamma(S_8 \to \eta \eta)}{\Gamma(S_8 \to K\bar{K})} = \cos^2 \Theta_{\eta \eta'} [\cos \Theta_{\eta \eta'} + 2\sqrt{2} \sin \Theta_{\eta \eta'}]^2, \tag{32}$$

(where we neglect the phase space factor)

$$[(1 - 4m_{\eta}^2/M_8^2)/(1 - 4m_K^2/M_8^2)]^{1/2} \approx 0.83$$

 $(M_8=1.3~{\rm GeV})$, and such a suppression seems to be indicated by experiment [23], too.

REFERENCES

- Binon, F., et al.: Nuovo Cimento 78A (1983), 313.
- Binon, F., et al.: Nuovo Cimento 80A (1984), 363.] Gershtein, S. S., Likhoded, A. K., Prokoshkin, Yu. D.: Z. Phys. C24 (1984), 305.
- [4] Ellis, J., Lánik, J.: Phys. Lett. 150B (1985), 289.

- [5] Robson, D.: Nucl. Phys. B130 (1977), 328.
 [6] Sharpe, S. R.: Proc. Vanderbilt Conf. on High Energy e⁺e⁻ Interactions AIP Conf. Proc. No. 121 (1984), Eds. Panvini, R. S., Wood, G. B., p. 1.
- [7] Novikov, V. A., et al.: Nucl. Phys. B165 (1980), 55, 67. Ellis, J., Lánik, J.: Phys. Lett. 175B (1986), 83.
- [8] Obraztsov, V. F.: in: Proc. of the 23-rd International Conf. on High Energy Physics
- Achasov. N. N., Gershtein, S. S.: Yad. Fiz. 44 (1986), 1232.] Lánik, J.: Pisma Zh. Eksp. Teor. Fiz. 42 (1985), 122, JETP Lett. 42 (1985), 149. (Berkeley, Cal. 1986), Ed. Loken, S. C., World Scientific, Singapore, 1987. Vol. 1, p. 703.
- [11] Lánik, J.: JINR report E2-87-483, Dubna, 1987, to be published in Z. Phys. C.
- [12] Gomm, H., Jain, P., Johnson, R., Schechter, J.: Phys. Rev. D33 (1986), 801.
- [13] Particle Data Group: Phys. Lett. 170B (1986), 1.
- [14] For a review and further references, see Zumino, B.: Proc. Brandeis Univ. Summer Institute in Theoretical Physics, Waltham, 1970, vol. 2, p. 437. Eds. Deser, S., Grisaru, M.,
- [15] Collins, J., Duncan, A., Joglekar, S. D.: Phys. Rev. D16 (1977), 438, Nielsen, N. K.: Nucl. Phys. B120 (1977), 212.
- [17] Patel, A., et al.: Phys. Rev. Lett. 57 (1986), 1288, [16] Reinders, L. J., Rubinstein, H. R., Yazaki, S.: Phys. Rep. 127 (1985), 1.
- [18] di Vecchia, P., et al.: Nucl. Phys. B181 (1981), 318. Albanese, M., et al.: Phys. Lett. 192B (1987), 163.
- [19] Schechter, J.: Phys. Rev. D21 (1980), 3393,
- [20] Au, K. L., Morgan, D., Pennington, M. R.: Phys. Rev. D35 (1987), 1633. Solomone, A., Schechter, J., Tudron, T.: Phys. Rev. D23 (1981), 1143.
- [22] Schnitzer, H. J.: Phys. Lett. 117B (1982), 96. [21] Prokoshkin, Yu. D.: Proc. 2nd Internat. Conf. on Hadron Spectroscopy, Tsukuba, KEK.
- [23] Alde, D. et al.: Nucl. Phys. B269 (1986), 485.
- Received July 7th, 1988

Accepted for publication August 5th, 1988

ЭКЗОТИЧЕСКАЯ ПРИРОДА СКАЛЯРНОГО G(1590) МЕЗОНА

яснены, когда это состояние является смешиванием состояний глюония gg и кваркония $qar{q}$ Показано, что свойства GAMS G(1590) скалярного мезона могут быть резонно объ-

320