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relaxation times in the same way as in the case of a single-crystalline metal in
order to obtain the total relaxation time 7 for the conduction electrons?

To give the proper answer — and it is the aim of the present paper — we will
refrain from any geometrical intricacies typical for common “metallurgical”
polycrystals. Instead we shall first consider a bicrystal and afterwards a superlat-
tice equivalent to it. We define the superlattice as a “homostructure”: our
superlattice arises by inserting equidistant, exactly planar, interfaces into some
single-crystalline metallic matrix.

In Section I1, we present a general discussion of how the solid-state physicists
usually understand the notion “Matthiessen’s rule”. We suggest that the very
simple formula for the electrical conductivity offered by the formal application

purpose, we scrutinize the problem in Sections III—V within the framework of
the consistent quasi-classical transport theory. We prove the statement con-
veyed by the title of this paper. (Sometimes the breach may be neglected but
many times not.) Section VI is reserved for conclusions.

I. GENERAL FORMULATION OF THE PROBLEM

Let us first consider a single-crystalline metallic plate of length £ _, width-L, -
and thickness a at zero temperature. We write 4 = L.L,Q=aAd. We assume
that L > q, L, > a and that the surfaces of the plate, located at 7 — +1a, are

perfectly smooth. The conduction o_mo:obmbnngmwnm&mﬁom‘yﬁdamna:wdmnc.-

- cles with some scalar (effective) mass m > 0 and with density n. The Fermi

energy E. and Fermi velocity v, are given by the well-known expressions:

Ep= h@a&awm , Vg = MG%&E.

2m m
Moreover, we assume that point scatterers of two types are present inside the
plate; let their average numbers per unit surface area be N 1» Ny; for the corres-
ponding average bulk densities we introduce the denotation n,= N,a; then
AN, = On,, a =1,

If the position 2, Wi=1,2, .., AN;j=1,2, .., AN,) of the scatterers
are distributed at random in the bulk, we may Rmvwoﬂ?a_w use two relaxation
times, 7, and 1,, to characterize the scattering of the electrons on the defects.
(The relaxation times may be taken with the constant electron energy E — E;)
The value 7, (value 7,) equals the relaxation time when defects of type 2 (type
1) are absent. If the defects of both types are mixed together in a non-correlated
way, the total relaxation time ¢ is determined by the formula
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1

—=— 4

T 1 g M
For the electron mobility H=etim, we might then write the relation

I 1 1

—_——= + —_—
4omoy =
where y, = - et/m (a = |, 2). (We shall take e > 0, the elementary charge.)

Relations 0)) mza (2) represent what is called Matthiessen’s rule. In the case of

uw Wk k') (1 - cos 9), k= |kl =k, S?Quw\%. @)

(The sum runs over the first Brillouin zone and W (k, K)= W(k', k) means the
probability for the transition |k —, Ik’ per unit time. We use the denotation
&> = A ~\/\Uv €Xp (ik. n); the reciprocal lattice vectors k are taken discrete.) The
transition probability p (k, k) (for the elastic Scattering) is given by the

Wk, k) = wla KKV iKYy 52 (k) - E(k)). &)

(E(k) = mu\%\ﬁid. When m:cmmﬂcm.sm the potentia] energy

!

pw
Vin = M v (r— on % M vy (r — \m:v (6)

i=1q j=1

into mo:d:_m (5) and taking into account only short-range potentials v, (r — rY),

v, (r — \.m:v of the scatterers (s0 that we may neglect any overlap between them),
we obtain the formula

Wik, k) = Oln, wi(k, k) + mw,(k, k)], )
where
N 2
wo(k, k') = Na Kk'| Val kDI S(E (k') — E(k)). (8)
274

Thus, by choosing the potentials v,(r) central symmetric we obtain, after stating
that

L 21, wak, k) (1 — cos 9). ©
7, P

g

relation (1).

This proof has involved one important prerequisite: the Poissonian bulk
randomness of the points . (Actually, we have utjlized its consequence::
the randomness of the phases in the matrix elements (k| v.|k> owing to which

subscript p (indicating “plane™).
In accordance with the above, only two relaxation times are considered: 1,
and 7, — the first being the true relaxation time due to the bulk defects and the

fictitious bulk density M, = N,/a. With the values h=1nand 5, =1, we can
then define, according to formula (3), the effective conductivity

qsumh+¢, = 3? +mv- . (10)

g, a,
Obviously, if we take a — oo, keeping N, constant, we obtain o — o,.

We call the central planez = 0 an interface, although we do not consider two
differently oriented lattices in contact but one single crystal with specially
distributed defects; despite this, we call our sample a bicrystal, The very
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Maxwell equation rot £ = implies that OF, [0z = 0, hence We may take £, =
= const. On the other hand, the electrical current density may depend on .
We define therefore the conductivity o by the integral formula

o.m.».hﬁ‘,
aJd

As we take the thickness ¢ comparable with the valye Ly, our problem turns
out to be a topic of the theory of the so-called classica] size effects [ 1—6]. In
calculating the conductivity g we could well take advantage of oyr previous
€xperience with calculations of longitudia] transport coefficients of double-layer
films ({7, 8], see also [9, 10)). But there are two aspects in which our present
problem differs from (and is, we nay say, simpler than) the former. First, now
we do not consider heterojunction and this implies that there is no refraction

a

dzj,(z). (12)

N [

&, formula (29)). mooou&vr NOow our stochastic definition of the interface does
not involve any concept of roughness.

It is excusable (and usual) to mode] v(r) by simple functions, The simplest
T€asonable choice are the pseudopotentials

with constant reg] values U,. Then formula (8) yields the perfectly 1sotropic
scattering:

27?2 2mm{>
EQF\A\”L%NW\A\IN\A = 2ok’ — 14
( ) PPy (E(k) Avv. PP ( ) (14)

(k = |k). After inserting expression (14) into formula (9) and taking into acec-
ount the customary replacement

22w,
IS ANNNVu

276

we obtain the resuit

L I (15)
ﬂn

_mU} (16)
Yo —

(cf., e.g., [6]). (The term with cos 9 has vanished.) As we are dealing with the
conduction electrons in a metal at 7 = 0, we may take

k—ky=(3n*n)'s,

It this case, if the defects of both types were E‘:moqz_w mixed in the bulk with
the densities n, and n,, Matthiessen’s rule would give the formula

1 mQ3nn)ts
T 3

So, for the corresponding conductivity o,, = ¢ 7/m, we could obtain the simple

expression
—1
§n$T+va. (18)
ayyhy,

AQMR@ =+ QME«.V = v\u:v + v\\kt. A_‘NV

Thus, we are to calculate the longitudinal electrical conductivity o of a metalljc
single-crystalline plate of thickness taking the potential energy of the conduc-
tion electrons in the form

n, AN, . I I
Vin=u, AM_ 3(r—r" + SMANV\W_ o(e — o), — 5 a<z< 5 a,

where the points £ and 0 are distributed randomly in the bulk and on the
plane z = 0, respectively, in the Poissonian way. (We use both three-dimensional
and two-dimensional radiusvectors: r = (x, 5, 2), 0= (x, »)) Maoos&vw. we are
to ascertain to which extent the value o differs from the vaule Oy given by
formula ( 18) (where Vs> ¥ are related to U,, U, by formula (16)).

HI. KINETIC EQUATION AND BOUNDARY CONDITIONS OF THE PROBLEM

We write the distribution function of the conduction electrons in the form

J@ k) =f(E) + g(z, k), (19)
where f((E) is the equilibrium (Fermi-Dirac) function. (Note that
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H(E) = E,— mv for .ﬂ = 0). We assume that electrica] field £ is weak. Then
W€ may use the linearizeq> Boltzmann kinetic €quation

% ¢ o,
Gu — 4+ == m‘ 20
0z g ¢ ac.«@m, ' (20)

where v = hkjm. (—e < g i1s the char . ,

e 8¢ of the electron. T i

is given by formula (15) (@ = b ) n.) The relaxation time T,
Before formulati A " .

(20), we wri ating the Go::ama\ conditions for the solution g of €quation

; 1
1 if ——a<z<p

wuv :,c..v° m
&= < : > EH
B ~m; Qu < O ~ . AN~V

2 f0<z<=g4
2

We use this denotation @n\mm Sn:..\uv I For £, however, the subscripts

B=1,2and the Superscripts >, < are irrelevant, Let X be the angle between

Some unit area on the Plane 7 = 0 witph N, defects. For every second, we record

_M.z:m area the incidence of ?‘oom X8 17 (o, k) electrons with some fixed
( _.mo.qm@ wavevector k. A fraction of them will pass the plane z = without

<<.:o= considering transitiong from [k to I&”> (with some given spin) we must
take into account on the ope hand the Eocmv:_@\;v for the State |k and on
the o.EQ, the probabilities I —f (k) for the states lk > — otherwise the
ransitions are forbidden. Thus we can write the balance Em::.@.
kis0

v OOmN\‘_V AOv \ﬂv = b\/\hw S\\A\ﬂ \ﬂ\v.\wv AO. \ﬂv: ’.\.Nv AO. \ﬂ\vu 4

ki<

TN 3wk kS 0, s /7O K+ Qv cos 1> (0, 4. (22)

8

from which we get at the relation

»MVo
Tmu@ﬁ w 2 wylk, K[~ £7 (0, k)] +
veosy L %

kz<0

+ M W, (k, K)[1 - £ (0, S_M. (23)

The sums can be simplified. We make substitution (19) and notice that the
function g(z, k) changes its sign if k, is replaced by —k, but remains unchanged
if k, is replaced by —k,. (Such statements follow directly from equation (20).)
Moreover, w,(k, k') = w,(k, —k’) (cf. formula (14)). With respect to these
relations, it is €asy to see that

k:>0 k:< 0

2wk, K)g7 (0, k) + M Wo(k, k') g" (0, k') =

g

kz>0

= 2wl K)lg7 (0, K) + 870, — k)] =

ki>0
= M w,(k, k') [g~(0, k., ky, —k)+ g, —ki k;, —k)]=0.
2
The last equality proves that we may simply replace the functions 170, k),
S0, k) in formula (23) by the equilibrium function f,(E (k). Owing to the
delta function in the formula for Wy, W€ may put the factor | — Jo(E) in front
of the sum. With w, given by formula (14), we arrive at the result

1—g=1 N, (1 — £ (E)] _mUIN,[I ~J(E)] 24)
v|cos y| it |cos y|

(We have utilized that Q¥ w,(k, k') = %> cf. formula (15).) (of course, the
formula for Q has equally to be valid if k, < 0; that is why we have written

The asymmetry in the energy dependence of Q (near the Fermi energys E;)
due to the factor 1 — fo(E) may be felt like a formal disadvantage. We can
remove it, since we may interpret the states [&> as the “Landau electrons”™ if
E> E; and as the “Landau holes” if E<E,. (Taking the energies £ on the
“electron scale”, we must measure the “hole energies” downwards:
E,= E; — E) In this way we obtain the probability

Q m:w.VMm
Q= Wms if E<E, 25)

In our particular case when take T=0, Q, is entirely energy-independent.
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~ ,:wm Jmf..:mza mﬂm of the formula for I - O given above has alw, St
€ss ~_ an unity. If thjg Tfequirement is not satisfied, we are forced to aﬂm o
€qual to zero. Thus, after msﬁaoacﬁ.:m the dimensionless parameter e

Dif0<p<i, then

Qk\iﬂ_l_ood for oMNANsm:amQaINsANMF

Qr(x) =0 for 4 < o

e Xon X<rm—y,, (27.2)
N Xm = arccos g; (27.3)
H) if | < 7, then

Or(x)=0 for ali angles y. (27.4)

w%mww omcam:.os in the quantum-mechanicg] Perturbation theory, valid (in our
orn<1.Ifn—1, and particularly if 5 > | the “Golden Rule” ceases 1o

o :M,M Ea Eﬁmn’moo Scatterers are weak (e if U,-0) and/or if thejr density is
all (i.e. if N, 0) so that 5 « 1, we obtain the approximate valye

1

ﬂra. tt . .
«S%ru AN 7 = Xn) of the interva] for which Or-=0 (according to formula

(27.2)) is then small; but for 712 1, this interya] Spans all angles y (from 0 to 7).

2.&
6= =i (29)
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in which the specular reflection of the electrons from the interface might take
place. We can explain this possibility by returning to formula (5) and inserting

VD~ U,8() Y, 80— o)

j=1

into it. The state Ik> represents a coherent de Broglie plane wave. Let k be
parallel with the plane ¥ = 0. The average distance between the points oY is
~N; "2, Take two points, @)’ and ¢, such that

M __ @ =12 . (O N )
I, X, |~ N2, Yo =3, =0.

The front of the wave |k) reaches the point 6 with the phase delay
Ap ~ kN2 |cos y|
against the point ¢, If Ap > 27, we may take
W,k K) = AN, w,(k, k),

i.e. we may accept the averaging procedure with respect to the random positions
0" that was used in the reduction of formula (5) to formula (7) as well-establish-
ed. But Eonv.m: the case when A@ < 2, i.e. when

12
cosy <2 .\VCI

E_D
(here we have omitted the numerical factor z/(372)'? that is approximately equal
to unity), the averaging procedure, contrary to the former case, will not entirely
suppress the delta-function term ~ Ok, —k,) 6 k,— k) 8k + k.) in the
probability W, (k, k’); and Jjust such a term corresponds to the specular reflec-

tion.
From now on, we assume that the quantity ¢ is sufficiently small so that the

phenomenon of the specular reflection may be neglected.
We write our boundary conditions in the form of two linear relations coupl-
ing the values of gs and g5 on the upper and lower side of the plane z = 0:

80, 0 =070, k> 0, (30.1)
&0, 0 =0870,k, k< 0, (30.2)

for the plane z = 0: B, =P, =0 (cf. also [1], §91).



:oﬂ,m. mere forma] EmnvoSm:om_ substitution: we may interpret is as 3 “decom-
.seb.:e: as well, with which the “Landauy electrons” and the “Landau holes”
(excited by the electrical field £,) can be detached (ina :Qnams_ﬁasmxvoaamiz

functions w\w, &5 > and not the Primary distribution functions £ £<.

free surfaces Z= = -aqa This ig ot a point at which it would be worth while to

. . N
Smooth. We can easily invent 5 situation where the identitjes (31) are quite

ov<.5:ﬂ.. if we oo:m_uamh instead of the plate of thickness a (Fig. 1a), a macros-
copic (“infinite ) single-crystalline metallic piece and instead of one plane

1N agreement with the assumption that the surfaces z = 4 1 a are perfectly

amm:ma 3\:3 _.:83&_ IM a<z AM a. Conditiong (31) then follow directly

from the Symmetry of the problem,

IV. SOLUTION OF THE PROBLEM

The general solution of €quation (20) has the form

- f
8z k) = ek, 7,0, WM T + C(k) exp Al -N!vgu (32)

T,U.

\WQ:MQQQ is an arbitrary function of k not amvos&sm on z(8C/oz = 0). For
s> &5 » we denote C(k) as Cg(k), C5(k), respectively. We assume that k_ ~ 0,

32

kl= —k <0 and ki=k,, k, = k,. (We shall show, however, that Cy (k)

Cz (k) do not depend on k., k, at all.) Conditions (30), (31) give us four
variables Cy(k), Cqk) (=1, 2). Let us consider 3 “Landau electron™ flying

through some point rwith the velocity v

= fik/m; we can construct — neglecting

1

any scattering except the reflections on the surfaces Z= 1 -~ a— the complete

.
.
.
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Fig. 1. a. A metallic plate of thickness a with
perfectly smooth surfaces (full ines) with one
interface (dotted line) in the middle.

b. A metallic superlattice formed by the periodic
arrangement of the interfaces (dotted lines) with
the lattice constant a. The space between the
neighbouring dashed lines corresponds to one

elementary cell,

2
3
IN.N
a
T 32
7. ¥
z=0-- ...../... b 2 4 IRV V A5
. (e Aw_ 1 ;
Fa—o0u S C U
2
-a LT T P paes
5 1
L SR ——
case a.:plate . case busuperfattice

Fig. 2. Equivalent transitions at the interface(s)

(dotted lines):

a. transits through z = 0 b, fictitious reflections
onz=0andz =3,

Ci=—q :@T ~Qexp( -~ z -

It

N.}_Qn_

IQISMQQAIaV, (33.1)

N.b_c.._
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Cr=cF, (33.2)
a

CP =¢CF oxnml vu (34.1)

N.&_Qn_ .

CF = ¢, (34.2)

With these values the functions & (z, k), 85 (z, k) are determined uniquely. We
can then calculate the local Current density Jx(2) and, eventually, the averaged
current density ;. (cf, formula ( 12)). .

We prefer, however, an alternative way of calculating Jx- Compare Figs. la

of the corresponding functions & at the interface 7 — 0 drawn in Fig. la. We
symbolize them by the four arrows in Fig. 2a. The two pairs of the arrows
symbolize the transits of the electrons through the plane z = 0. From the
Symmetry of the problem, we cap conclude that & =g° and & =g,

tions) indicated by the broken lines with the arrowsin Fig. 2b is, of course, equal
to O, since & = Qrg” and & = Orgy° -
But if the value J. (or the longitudina] conductivity o) were calculated for a

metallic film of thickness g (Fig. 3), with surfaces corresponding- to-the dotied

lines of Fig. 2b and with the Fuchs specularity parameter [2] equal to Oy, the
result should ultimately be the Same as for the periodica] problem (Figs. Ib, 2b),
and then also for the original problem of the plate with the central interface

in accuracy as the equivalent single-film problem, we may omit the subscript g.
(Therefore, g in Fig. 3 js denoted as &7 ifk.> 0and a5 o < ifk. <o; clearly, if
the QoBm:SJ\On: of the periodica] problem is chosen according to Fig. 2b, its

g< g> )
Fig.3. The €quivalent Fuchg problem (for g
=) single thin film of thickness a),

conditions for g> (2, k), g<(z, k):

8700, k)= Q,¢<(0, k), (35)
&%(a, k)= 0,g”(a, k), (36)
where k' = (k| k,, —k). They result in the values:
as \7!
(I ~ ; (37)
cr=—q @T 0 eeﬁ_ﬁz
“=exp(~-——)c>, (38)
™= SGA N.@_F_v
We write .
8 (z, k) = wxET +C> QGAI & (39)
N.v_ﬁn_
< = 2 i 40
8@ R =gk 1+ exp is_z “0)
where "
%vA\ﬂv = W@A*\v = Nm.k N-&C.«@’me. AALV

As g7 (z, k) = g=(a—z, k'), both functions g> (2, k), g< AN, k') contribute
equally to the value Jx- Hence we may ©€xpress j, as the integral

e

B 4ra

- lh%%: &r&%% dk.g> (z, k).
27%a Jo —® 0

The integration with Tespect to z is easy and gives the result:

Jo=—C \s dk, dk s% &sm% +cC> @T ieannhvﬁ.
* 27 —o 7 0 a L0,
(42)

This formula is essentially correct even in the case when £, (E) does not relate
strongly degenerate fermions (for T'> 0); we must only assume that the energy
bands of the electrons are flat. .

It is convenient to introduce the spherical angles:

Jx =

% dz R g (z, k) =
0

\Pﬂ\ﬁoomsmmzn«u \@H\«misac»x k,=kcosy. 43)
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If we take into account that —0fy)/0E = O(E - E,)
F

c .
FCOS ¥ and v, by UrCOSQ sin y. We define the dimensionless quantity

k=9

L (44)

(cf. definition (11) and assumption

tivity o (given by the relation 7 o (13)). For the longitudinal electrical condyc.

OF,, cf. definition (12)), we obtain the

result
L
o=g _.TM ? Ay win? K
b 2K J, X sin XcosyCz(nm, RVT loxnml VMm“ (45)
cos .
where
e’rn e’ln
g, = — = . 46)
muy

We have used the denotation Ce(n, p) for C>)iIfE=E,.
4 - L.

nlgtulztpgggzlﬁsézéd.avﬂx

cos y.

:amuo Qw@m X =0y) (given by formulae @7).
ormula (45) shows that the ratio oy 0, depends on two positive parameters:

and K. if 7 =
7and K. Note that if 7=0,then Q, = | (according to formulae (27)) and hence

mq ouem o wa hich 12nd, if 7 2 1, then F=0s0 that C; = — 1; this s the
pecial case or which the conductivity ¢ jg equal to the Fuchs oocm tivity of
a single metallic film of thickness ¢ = uctivity o

. = K, with the t i
ing of the conduction electrons: ’ otel diffuse .@:l.mn@ Seatters

]
3 [3”
Oryeps = 8% = quh dy sin’y oom&ﬁ_ lnxvml X VFW, (48)

cos y,

Q.”qu,\n ~WQN~

Landay electron” or a “Landany hole

1=1- 0.0 (50)

dccording to formuly (27.1)). (Of ¢
e o | s ( QLWVAH c.w::,mn, formula (50) does not concern the case

86

» W€ may replace v, by

V. SPECIAL RESULTS

In order to obtain the values

2~ F(, K) (51)
O

we must apply the integration required by formula (45). Our aim is to compare
the values F (n, K) with the “Matthiessen-type values”

Oy I
—=Fy(n, K) = . (52)
o, M\ 1+ n/K
Notice that 5/K is the ratio of the relaxation lengths /,, by
a_h (53)

K I
(Recall formula (18) and the definitions by = vp/(ymy), L, = ave[y,N,).)
When fixing X for a moment, we can conclude that F( 1, K) behaves analytic-
ally as a function of the variable 1 near the point n = 0 (i.e. this point is not a

pole); obviously, the analyticity proceeds along the whole positive semi-axis
1> 0. For n = 0, we obtain the value

F0, K)=1 (54)

for all (reduced) thicknesses K = afl, > 0. (In other words, if 1 =0,then o= g,;
however, remember that this conclusion has resulted from our boudary con-
ditions on the outer surfaces on the plate — conditions (31). Were there though
even some slight deterioration in the reflectivity of the electrons on the outer
surfaces, the values F (0, K) would become less than unity.) On the other hand,
when taking F(7, K) as a function of the variable K, we can at once see that
o0, if K— o0, ie.

F(7, o) = 1 (55)

for all values n > 0. Formula (52) implies that conditions (54), (55) are equally
satisfied by Matthiessen-type function:

N.JEAO“ Nﬂv = Nu:AQ» 8v = —
Moreover, we can prove that

dF (1, K) _ 9Fy(n, K) 1
0 @d n=0 K

on (56)
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(The proof reljes on the direct differentiation o

with fixed X.) Hence, we may state that ormula (43) with respect to 1,

ES,NVM%SVNV.TOANM_lm 2
w7, K ) x 1o (57)

77 < K. Thus, 50 far we have only proved that Matthiessen’s rule holds under

the condition that the densit
: y of the defects on the interf; i i
low against the valuye an, of the bulk defects, i.e. if R R mcmmemzzw

Y
N, == .
< Av\ an, . (58)

MVMMNRH.-:..«\ this case is not so very interesting since the relative deviation of the
Z:o:SQ o ?@E the value Oy is smail (given by the value 7/K)
ow we will give our attention to the Opposite condition, when 0 < K<n

» @5 1t 1s derived by some lengthy calculations .
: . ) ns in the A
function F(n, K) is approximated by the function F(n, K) ppendix, the

b

F(m, K) = F(y, K)+0(x), (59.1)
3 3
mS,Sullﬁammv+Tfn ~npg-Ls]K
3 . AQ nn)q - 27 P (60.1)
Or more precisely by the function E(n, K),
F(n, Ky = E(@n, k) + 0(?, (59.2)
5(n, K) = F(q, SIT nm_ ~2in v — &
L 5 ey (60.2)
(In formula 60.1
1 (60.1), v means the Euler number — see the Appendix, formula

Clearly, when taking the limit g —,

Positive values 7, the resujt +0 (from the right), we obtain, for all

| F(n, +0)=0, (1)
In full agreement with the result

Fy(n, +0) =0

functions F(n,K)and F ( i j

ctior » K w(n, K) ends: if we juxta 0se
derivatives OF(n, K)/oK, OF, (7, K)/OK, we mn% ve s
over, 0F/0K diverges for X +0,
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K 3 |
2O _ umiAfviiM:+T_§:Iqu+o§, aw

0K 4 n 4
whilst the Matthiessen-type function F,, behaves regularly:
OF,,
— =14+ 0(X). (63)
" 0K

If neither the condition 0 < K < 17 nor the condition 0 < n < K is fulfilled,
then any further formal adaptation of integral (45) appears to be more or less
superfluous and some numerical integration is needed for obtaining the values
F(n, K). Fortunately, there exists one exception — concerning the value n=1:
in this case, we may use the Fuchs result [1—3, 12]. We write

Fruns(K) = F(1, K). (64)
Note that, according to our definition,
F(n, K)=F(, K) for n> 1 (65)

as well. Using the substitution u = 1 /cos x in formula (48) and the definition of
the function E, (x) (formula (A.5) of the Appendix) we can bring F,,.(K) to the
form

w u w
D:wn~|l~+o-a+lmw+;mw. 66)
:Av wNA ) 3K 3(K) : +(K) (

We have utilized the relation
1
E{(K) = m?# — K E,(K)].

Values (66) can easily be computed since there are tables of the functions E;(K),
E,(K) in an accessible handbook [13]. (E5(K) was not tabulated in [13])
Some results of our numerical computations are preseted in two Tables.

Table I

Asymptotic functions £ (n, K) and E(7, K) for K < 1, with K = 0.01; their comparison with
the Matthiessen-type function Ey(n, K); ry = 100 (K — EJ)/E,.

= 0.1 2 3 4 5 6 ) 8 9 1.0

K 0956 | .0560 | .0453 | 0411 | .0392 0383 | .0379 | .0378 | .0377 | 0377

) 0899 | 0551 | .0451 | .0410 | .0392 | .0384 0380 | .0378 | .0378 | .0378

F, 0909 | 0476 | 0323 | 0244 | 0196 | .01 64 | 0141 | 0123 | 0110 | .0100
(%]r, | =111 [+15.72] 39.68 68.23 | 99.96 | 133.96 [169.572( 207.32 243.66 | 281.37

= [.0004| E
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are chosen such that K <«

asymptotic functions £, K), £(n, K) (formulae 6
We may state that the improvement offered by the

with the function K is not significant unless for a narrow interva] of the valyeg
7, such that 10 < /K < 30. (For n/K < 10, the function £, ceases 1o suffice at
all and higher-order approximations have to be a
difference between the functions £ and £ is negligi
I presents the Zm:rmommas-aﬁo values F, (n, K). Finally,

how much (per cent )the values E (7, K) deviate from th
1t is seen, the deviation

0)). Looking at this Table,
function £ in comparison

the fourth row shows
e values £, (7, K). As

LB oy 67)
100 E,
becomes considerable for n/K > 20. Note that, for small values of K, we may
write
FHPJRXS ik O(K), ie.
100 100 Ey,
r 3 3 1
w30 20—t iom,
100 4 ¥ n/ 4 4 (68)

(Naturally, this s not contradicted by the negative value of r = rnfornp=0.1
in Table I. Namely, in this case, the value X = .01 to which Table I relates must
not be considered ag sufficiently low for the confirmation of the statement yet.)

Table II demonstrates similar data, but for some fixed value 7. We have
chosen = 1; then F = Fons(K). The values of Frions(K) were computed from

formula (66) and iawﬁn:ao::w, with equal success, from formula (48) without
the use of the functions E,(K). (Integral (48) was fir

| ..
PMD 85-2 for this purpose; when the integration interval Ao, 5 Nv was divided
into 100 subintervals, the computation of one value Frns(K) took about 45
seconds of the machine time. Secondly, we have also checked the numerical
integration with the aid of another scheme: we have taken the integral

z(x) = .\ dry(2) as the solution of the differential e
(1]

the Cauchy “initiaj condition”, z(0) =
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quation dz/dx = y(x) with

0. Then, after having defined 4 = n/

A Zv» 2 9

, = 7~ A(z(— A) = 0): s0
z(x + 4) = z(x — 4) + 24y(x) for x = A, 3A, mbu..;wa (z(—=4)
1 . . It
i - | ordance with the resu
we have obtained the resulting value z AN NV in full conc
Table IT

i i i - function F,(1, K); their relative -
i tion K, (K) with the Matthiessen-type i .
M M\Mwmuq%m.wm, MMM M,MW M ~ - MMV\\M,M (percent, n = 1); for K < |, the asymptotic functions £ (1, K),
) - E(1, K) are also given.

K g E Fruchs Ey [%] r
1
0.01 0.0377 0.0378 0.0099 ww w M
02 0650 0652 0196 26
03 0884 0889 0291 .
04 109 110 0385 186.1
05 128 129 0476 171.1
. 146 147 0566 160.3
pe 162 164 0654 150.9
o8 177 180 0741 1429
- 191 195 0826 136.1
.wo 204 209 0909 130.0
.N 305 325 323 167 ou.w
3 366 411 406 231 M.A
4 402 482 470 286 .
s 418 543 522 333 56.6
P 420 600 565 375 50.7
7 409 654 602 412 46.1
3 388 708 633 444 ww.“
9 356 761 660 474 94
10 317 817 684 5 .
RE 545 326
“ .M 755 583 294
. 780 615 268
s fot defined 801 643 24.7
M,M 819 667 229
906 3 133
. 938 857 9.4
M _ 953 889 72
962 909 59
0 981 952 3.0
p 992 980 1.2
_wm 996 990 0.6
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?n_:: the Simpson _.:Hmmnm:.o:.v The comparison of the values K, and £ with the
vatues Iy, (K) a:m.zam Us to see to which extent the first-order (£) and secongd-

Comparabile to, and i i
o €xpecially for X much less than, n.Fork - +0, the relative

\.Ar ‘va NW..:Q«AN‘

100 £, &)

becomes very high indeed! And jt becomes still higher if 7 ;
NSNS 1gher if 5 is chosen greater than

— 1

\Aﬁw hv = Nw..:&a,ANv _
100 E.(n, K)

It 1s a matter of some elementary mathematics to verify that

r(n, K) n+ Nﬁlr K)

100 1+xL 100

1; - (69)

+Ll~ forp>1. (70

VL CONCLUSIONS

_:Sw@ow 5. case a., or between the interfaces in case b., is defined as a “back-
ground” with some bulk density n, of possibly other defects. (The interface
ammnoa.m:m the bulk defects may differ in the strengths y,, 3, of their potentials.)
If the Eﬂmammoo@ were absent, the conductivity Soc_m €qual some value o..
Eomoﬁoz& to the relaxation length I of the conduction electrons (¢ ..M
broportional to the bulk relaxation time % of the conduction &nm:o@:m
&y = 1,0, where vris the Fermij velocity.) Otherwise, under the assumption of En,
presence of the _.anwmoo@v, we have shown that 0= Fo, < g, and derived the
dependence of the dimensionjess factor F(0 < F < 1) upon two dimensionless
parameters: 5 = Y,N,/vp and K = a/l,. With these parameters, Matthiessen’s
rule would require that ¢ ~ £, 0,, where by=K/n + K), but ,w\n have shown
that such a m:.dn_o relationship would only apply under mro condition n < K
Hence our main conclusion is that Matthiessen’s ruje is not validated ifK< a.
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However, it should be emphasized here that the results of the present paper
should certainly be modified if extremely small (reduced) thicknesses K were
treated (i.e. in the limiting case when K — +0). Namely, then our calculations
should be replaced by more demanding ones, well, beyond those of the quasi-
classical theory. To suggest why the theory must be modified if the values K are
small, let us discuss the extreme situation when the density n, of the bulk defects
vanishes, i.e. when all defects are located on the interface(s). Then, according to
our assumptions, o, — oo (sifice ly — 00, the so-called Bloch superconductor),
although o, X tends to some finite non-zero constant. Nevertheless, the leading
term in the function F (see the asymptotic formula (60.1)) is of the form
~—KInK and hence o ~ 0,(—~KInK) diverges logarithmically if K — +0.
This result is, of course, physically incorrect and has to be considered as a
consequence of the quasi-classical approximation.

A rigorous application of the quantum mechanics should moderate the
deviation between the functions F (7, K) and E, (n, K) (see Tables I, IT); the
deviation is, according to the quasi-classical theory, very high just for K < 7 (the
relative deviation r/100 = (F— E)/Fy~ — InK, cf. formula (68)).

The quantum mechanical revision of the problem would surely be interesting
in view of some submicrometer microelectronic structures, and especially semi-
conducting superlattices “tailormade” for high-mobility devices (such as the
so-called HEMTs, MODFETs, etc.). To describe exactly the (possible) func-
tioning of such devices, theory must cope with many further difficulties. (The
ballistic transport employed in these devices may concern warm, or even hot,
electrons so that the inter-electronic interactions may be important enough, the
driving electric field may be high so that the linear transport theory may become
insufficient, quantum-mechanical surface states may arise as a new vital factor,
etc.) Physical problems due to these devices are certainly challenging not only
for researchers trying to invent new microelectronic applications but also for
contemporary solid-state theorists eager to better understand new phenomena

related to two-dimensional electron gases.

APPENDIX
We will derive a formula for o/o, = F (1, K) under the assumption that
O0<K/n<l. (A1)
Here 1 may be arbitrary but such that 0 < < 1. We dissect the integration
interval Ac, W ﬁv in formula (45) into two subintervals: 1. the right-hand
subinterval / = A& I v and 2. the left-hand subinternal [, =10, y,,), where

s

2

N
O
w




COSXm = 1. We use the denotation

F=]

where A 3..8
AF = (AF), + (4F ), (A.3)

(4r),, (4F) being the contributions due (o the subintervals 1,1,

Ooi?.c:t.o: due to I
1z

(4F), = - 3 |? dy sin’ y oOMNT - GGAI X vg

2Kk J,, cosy/] (A4

I

The substitution U = 1/cos y gives the interval

32 [© A~ 7> X
T o) Gl 5= - exp( - K
2k i T\ :,vT QGA ﬁ

N
)
I

1 1 1 I
muQvlmlkllku ~:H+M .\\avxw.*.lkul“ka.vOOﬂuvu

2 6 48

11 I 1 1
Es(x) =~z MR+MRNJNHuIMMkA EH+W Y(5) x* + O (x9),
where
n— 1 I
m = 5 —_y (forn > 1),
m=1m

,NEH%_ de &7 (n=0,1,2, ) (A.5)

3 _Nv 3 A\Av wﬁ I,
AF), = —Zpll -2} -2 kIn(2) 42 vO) — -’ K+
il NQA 37) 74 n/ 4 2"

2
c11+7 K+ O(-K InK). (A7)
4 7

Contribution due to ],

X

w s .u v _H Al NA vg
” q 3 —'0* ’ >®v
Eﬁv\ K aNmENOOmNmSRv P cos 1. (

where C7 is given by formula (47) with Or =1 — njcos y (formula (27.1)). We
can show that (AF), is analytic in X (including the point K = 0) for K> 0; we
may develop the functions C 7 and 1 —exp(— K/cos y) into the McLaurin series
with respect to K:

_ 2 NN
QW“|~+A—I n V%«+A'~+M’d"l n v,:TOANA‘uv,

cosy/ n 2cosy 2costy/ n?
~IQGAI Nﬂvﬂ & A_Iw NV+OQAJ.
cosy. cos y 2cosy

Then we have to calculate the integral

X
m ~ kﬂ
(4F), = lw% &ZEQTIA ==t vl+
(]

2 2cosy/ i
2 2
+AT n_ 1 7 ﬁ.ﬁlLﬁoﬁé. (A.9)
cosy 6cos’y/| n?
The integration is €asy and gives the result:
3 1 Nv A 3 9 1 \K
=—Il+>pll—=n’)+{1+2nm ——n+-n) 2=
(4F), +NQA u: Ad n 2 g -
1 K? ,
%Tmi_uu::i | =+ 0K, (A.10)
n
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Complete asymptotic formula for AF (K - 0)

Putting contributions (A.7) and (A.10) together, we obtain the fina] result:

3 1 K
A:QHI_IMNA_: — ]+ ~l..i<l_=illaw - —
4 n 4 4 n
3 n? 1 K?
~{l == <2 ——{l+-= —+ 0(K?). All
g 1) 5 57 p” &Y. (Aan
Note that Y =0.5772156649.
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TIOYEMY npABUIIO MATTUCCEHA TEOPUH METAJLIOB
MOXKET YTPATUTH CUITY? — U334 PASMEINEHUSY AE®EKTOB B
-NJIOCKOCTHX

B cratee yureny TeoMeTpuyeckn npocreie OuKpucTaHYeckne HOJIMKPHCTAILTHYECKHE
MeTanndeckue wianT ¢ 3€pHAMH B dopMe pasmbix cnoes. Tema craTpy — TEOpHA HUX TPOAOABOH

€AeAUB
ABYX THHOB: ORHOIO THNA — B 06beme 3CPH, APYTOro — Ha rpassx Mexny sepuamu. Onpes
edexToB, ABTOp Ha CAMOM JieNie CTaBUT BOMPOC O TOM,

ONPABAAHO JiM, XOTA 6bl NPUBIHINTENBHO, B TEOPHH NMPOBOAUMOCTH ZnMNE.:Om € BHYTPEHHHMH

6iieM caydae oTeet OTPHUATENbHBIA (naxke eciin B ciydae

ATHI KaK COBEPIIEHRO riankue). HexoTopsie yucnennbie

PE3YJIBTATHE ABTOPA NOJTYy4CHB! MAIMHHLIM HHTETPHPOBAHUEM OHK :vswnho.mz B hwﬂhz.“mﬂwsnmx.
B ocHoBe Teopun — xuueTHuecKoE ypaerenue Bonbumana ans snexTporos nPoBOA ;
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