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MODEL OF THE QUASI-ONE-DIMENSIONAL
ELECTRON-ION COULOMB SYSTEM
III. THERMAL PROPERTIES

JANETKA L.," Bratislava

We present a numerical calculation of the mean-field temperature of the Peierls
transition whose presence in the quasi-one-dimensional system is proved in- Part 11
We also settle restrictions on the temperature that must be obeyed for the description
of the properties of the quasi-one-dimensional system of electrons and ions with the
Hamiltonian derived in Part I to be correct. From the obtained values of the charac-
teristic temperatures, implications concerning the phase state the system condenses in
are drawn.

I. INTRODUCTION

Properties of 1D systems have been studied mainly with the help of the
mean-field theory in which effects of fluctuations are disregarded. The mean-
field theory of the Peierls transition in 1D metals was originally proposed by
Frohlich [1] and Kuper [2]. Later it was elaborated by many authors
[3—5]. The mean-field calculation predicts that the initial high-temperature
lattice turns out to be unstable at the Peierls transition temperature:
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where A is the dimensiorless electron-phonon interaction parameter of the

Frohlich model given by
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and Iny = C = 0.5772... is the Euler constant. All the other parameters are

defined in Part II (foregoing paper in this issue).
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In more complex 1D systems, in which several phonon bands couple to the
electrons. the Peierls transition temperature is determined by the dimensionless
parameter A to which all the phonons contribute [6, 7]

\w = MM\: bl M\: = N%.=:§ . AWV
" \wHMo =AN\A.\V g N\ﬁ,\.

Thus, the greater A, is, the more strongly the phonons in question take part in
the transition.

However, the application of the 1D mean-field theory to real Q1D solids is
a little complicated by the fact that 1D systems are not supposed to exhibit phase
transition at nonzero temperature [8, 9]. Namely it is well known that thermal
and quantum fluctuations shift the phase transition to zero temperature
[10—14]. A way out of this dilemma was first proposed by Lee et al. [15]
who showed that the interchain coupling partially suppresses the effects of
fluctuations. Thus, the interchain coupling enables the development of long-
range order in the transverse direction resulting in a crossover to the 3D
behaviour of the system. Therefore, a true phase transition is observed in the
Q1D systems, according to the estimate of Lee et al. [15] at the temperature
T < T,/4. The factor 1/4 is somewhat arbitrary. As a matter of fact, it is a
sensitive function of the interchain coupling and as it is known now, a small
degree of the interchain coupling is sufficient to bring the actual transition
temperature close to the mean-field value [16]. It must be mentioned here that
3D oscillations of phonons of a single chain also enable the true phase transition
[17].

Despite their limitations, results of the mean-field theory have been useful in
interpreting experiments and therefore it seems worthwhile to improve such
calculations. In this paper we extend the existing calculations of the transition
temperature to account for the effect of periodicity of the lattice. Further, we
numerically compute the transition temperature of the Q1D electron-ion Cou-
lomb system which, as shown in the foregoing paper, exhibits an instability
towards the Peierls transition.

Besides the transition temperature calculation, we give a few fundamental
formulae from the thermodynamics of the phonon system to discuss the validity
of the harmonic approximation. This approximation was used in Part I [18] for
deriving the model Hamiltonian of the Q1D electron-ion system. We use a
formal expression of the anharmonic terms to obtain a restriction on the
temperature which must be obeyed for the model Hamiltonian to be correct.

The arrangement of the paper is as follows: in Sect. Il the elementary
thermodynamics is applied to the present model of the jon system.

In Sect. 11l we calculate the temperature at which the Q1D electron-ion system
exhibits an instability of the Peierls type.
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II. THE THERMODYNAMICS OF THE ION SYSTEM

As shown in I, the 1D ion Coulomb system immersed .E a :3@:: .Umow-
ground of negative charge can be described in the :m::ﬁ”:_% mgqoxm:ﬂmso”ﬂomnm
i . i illators. The calculation of the -
stem of independent harmonic 0sCl i
w:wwvimawo quantities of the ion system then proceeds along the well-known
route followed for the harmonic omos._m:: [81- .
The Helmholtz free energy of the ion system 1s
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Knowing the free energy we can obtain the thermodynamic quantities as, €.g.
the energy .
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etc, The plot of the specific heat as a function of the temperature is shown m.:
Em. 1 for two values of the parameter r, namely, r = 0.5a and r = o..om. >_m in
I m_‘._a 11, throughout this paper the other parameters take the following values
Z* = m\nu a=34%x10""m, € = 2.6. We emphasize once more that all the
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Fig. 1. The specific heat of the 1D ion m<m~w~= 0 14 ot )
immersed in a uniform background of negative - wa —
charge (curve A is related to r = 0.5a and cur- A Zav m:.:_
ve B to r = 0.9a).
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thermodynamic quantities obtained in this section express the properties of the
1D ion system immersed in a uniform background of negative charge.

Using the expansion of the hyperbolic functions at a small value of the
argument (%42, (k) < k,;T), we get in the high temperature limit

Q
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Fig. 1 gives an idea about the values of the temperature that can be regarded
high because of (Z*m/M)'? nhi*k/(amkg) = 1.36 x 10°K for our choice of the
parameters Z*, a, €, and M = 3.26 x 10~ * kg (corresponding to the mass of the
platinum atom). We remind that the numerical values of the parameters corres-
pond to a platinum compound like KCP (see the foregoing paper).

So far, our attention in the treatment of the ion vibrations has been confined
only to the harmonic term in the expansion of the ion-ion interaction potential,
i.e., to the term which is quadratic in the displacements of the ions from their
equilibrium positions. However, at high temperatures the effects of the anhar-
monic terms (cubic, biquadratic etc.) in the ion displacements may become
important. We now estimate the temperature at which the anharmonic terms are
to be taken into account.

Landau and Lifshitz [8] showed that the first correction of the free
energy (equation (7)) due to the anharmonic terms has the form E ou= AT
This correction is valid at high temperatures, at which quantum effects are
unimportant because the correction was obtained by methods of classical statis-
tical physics. As Landau and Lifshitz [8] emphasized the expansion in
question is essentially an expansion in the power series of the parameter NkgT/
/1Eo| and not kg T/#£2,,(k), which is large in this case. Hence we conclude that the
anharmonic terms do not have to be considered as far as

T < T, = |g/ks (10)

where ¢ is the ion-ion equilibrium position energy per ion. It can be expressed
in the form
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The plot of & as a function of the transverse mamamcm of the ions is shown in
Fig. 2. We note that Z*%e’/(me &.auv =21 x._o K. . . o
There is still another possible 58835«59 of omcm:os (1 v., name N“ s
stability criterion of the 1D ion system mmmwsmﬂ melting. >ooo_d5m. mo M ei Om
of Lindemann [19] (see e.q. [20]), a solid melts because the vibra _osmH:
the ions about their equilibrium positions become t0o large. Ina 3D mwm_monw om
jon vibrations are considered to be large E:o.s 9@. mean-square mm% :m e %:
vibrations is comparable to the square of 9@. interionic spacing. T _mmn:mwm_m "
of large vibrations is not applicable to a 1D 1on m.%mﬁa. an reason for o s
that the calculation of the 1D mean-square Bdﬁ_:r@o o.m Sch.oE as we s
the calculation of many other 1D fluctuation ncwsccom yields a 9<an~mn=~ Rmrc t
at a small wave vector. The 1D vibrations o.m the ions can be Rmm.ao.a arge 49 M:
the energy of vibrations is comparable with the EJ-_oz.anE_._cw\cM_ memw_ ton
energy. Since at high ﬁaﬁnmmg.nnm the energy of S.damco:m is ,“< M L Mz&
tion (8)) and the ion-ion onizczﬁ«: com:_.os energy is N;&, imrno obtain he
condition (10) as a stability criterion against melting. Thus, the melting

ture is
P T, = ¥mTi (12)

where 7,, is a dimensionless parameter which may depend on the ion size.
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Fig. 2. The ion-ion equilibrium position energy 304 | A
per an ion as a function of the transverse radius 0 10

r/a
of the ions.

The obtained melting temperature expresses only Eo._umn:nm of the ”b _ﬂw
system. It may happen that the temperature of the chemical _awnomﬂnom_ nwﬂca
. ing i i ia is lower than the 1D melting temper
the surrounding insulating media i1s 1t ot
i i T means the decomposition tempe .
iven by equation (12). In such a case, ;.. .
Woomcmw of this, the temperature T, obtained from o.ncm:ou (12) can be regarded
as the upper limit settled on the value of the melting temperature.
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Anyway, T; gives the restriction on the temperature because the ion part of
the total Hamiltonian correctly describes a 1D ion system only as far as the
temperature is much lower than T,. Another restriction on the temperature was

given in Part I. It was shown that the electron as well as the electron-ion parts
of the Hamiltonian are correct as far as

mw
TKT =—-—. (13)
2mrik,

The condition (13) ensures that only the ground state subband related to the
transverse motion of the electrons is occupied.

At this point, it is necessary to point out that the impossibility of a phase
transition in a 1D system due to thermal fluctuations was determined on the
basis of thermodynamic considerations. The thermodynamics predicts that a
long-range order which is always settled at the phase transition, cannot exist in
the equilibrium state. However, in thermodynamics the question of equilibra-
tion time is not considered and the destruction of a long-range order is deter-
mined even in the case when the probability for it is extremely small. It is clear
that as far as the temperature obeyes the condition (13) the appearence of the
fluctuations in question is highly improbable. And if also the actual transition
temperature of the Q1D system obeyes the condition (13), it can be determined

on the basis of the mean-field calculation. In the opposite case, it can differ from
the mean-field result.

IIl. THE TRANSITION TEMPERATURE

As indicated in the foregoing paper, the transition temperature 7 is the
solution of equation

@, (k) =0, (14)

where the squared renormalized phonon frequency at the wave vector 2k, and
at the temperature T is defined by

Q, r(2k) = %2k + amo~QAN»\ + K) — Q(K)] -
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The 1D dielectric function e,(2k,, 0) is logarithmically singular as 7 — 0.
Therefore, bauﬁw\v\mlw»\, 0) does not contribute to the squared renormalized
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phonon frequency at zero temperature. Being mcaqﬂna %_u the mnam_ﬂ_o:wm Mwﬂwn
i i reque
i f the squared renormalized phonon s
give the negative value o freduency &0
i i d to undergo the structural p
1D electron-ion system 1s suppose . ton-
m\:r rising temperature, bmﬁww\mﬂﬁwb 0) mn.macm:um _Mﬂmwﬂumowﬁwﬁm” M”,om»:m:m
iti i the total negative contri
sition temperature, it cancels . : of the reman e
i he main point of the transitio p
terms. Hence it follows that t ! s
ion 1 ninati f the temperature dependence o
calculation is the determination ol U : ) the 1D
dielectric function at 2k,. It was shown in 11 that in the RPA approximation,

1D dielectric function at 2k, is given by o
er(2ky, 0) = 1 — v(2k) Ar(2k;, 0), (16)
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obtain an analytical though very mvvnox::.maﬁ expression of >;E¢_u nvmo,an
integral is usually estimated in the following imvwﬁw:. First, mewn m\nw: e
dispersion relation is linearized, i.e., E(g — k) —# kf \ANE.V ~ = E_ r and
E(q + k) — B2k} /(2m) ~ h’kq/m. Tt is a reasonable mcvnox_amsmn M: u\a the
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cut-off to avoid the divergence of the integra . oD o
ic di i i tor ¢ is supposed to lie be
electronic dispersion relation. So the wave vector ¢ A L
ice of k,/2 as a bandwidth cut-off ensure ]
—kyf2 < g < ky/2. The choice of &y . : ) e
i for both linearized and qua

i m values of the energy are the same .
MMMMH% Various aspects of the linearization of the m_oo.:o_:n spectrum and the
problem of the bandwidth cut-off are discussed, e.g., in [10, 22, 23].

Thus, A7(2k;, 0) takes the form

where

Ar(2k, 0) =
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MM%.MV mmra ow_oc_mﬁ\moum %ms proceed along the route known from the theory of
superconductivity {24]:
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Now, the equation (14) can be rewritten in the form
272
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where E.n dimensionless electron-phonon interaction parameter of the Q1D
electron-ion system A at the temperature T is given by

= El ~H 2 N N
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In the jellium approximation, when all Wmvooﬁm of periodicity are neglected, the

dimensionless electron-phonon interaction parameter is independent of the
temperature and has the form
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The expression Bo.v.ﬁommzﬁq with A given by equation (22) approximately
wx%nommmm the transition temperature of the Q1D electron-ion system in the
Jelllum approximation. It corresponds to the formula obtained

and Takada [25]. ety Nakams

In the present model, £2}(2k) = Q3(2k,) and equation (21) reduces to
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Numerical .ooBmEm:osm prove that A; slightly varies with the temperature.
,_,:anamoay in equation (20) A, can be replaced by A,, the dimensionless electron-
Urosom _:R.wnmoaoa parameter at zero temperature. Then, we have the final
approximative formula for the transition temperature of the present model of
the Q1D electron-ion Coulomb system:

272
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mk g
,Emm.ogm::oa expression (24) is of the same form as the expression (1) for the
transition temperature in the Frohlich model. However, as it is emphasized in
the foregoing paper, the transition in the Fréhlich model appears to be only a
result of the influence of the electron-phonon interaction on the unrenormalized
phonon frequencies. It manifests itself in the dependence of the dimensionless
electron-phonon parameter of the Fréhlich model only on the strength of the

256

electron-phonon interaction. On the other hand, the transition in the present
model of the Q1D system appears to be a result of the influence of both the
electron-ion interaction and the electron-electron interaction. Because of this,
the strengths of both interactions enter in the expression for the dimensionless
electron-phonon parameter of the present model of the Q1D system (equation

(21)).

13 - T
<
<
16 =
Fig. 3. The dimensionless electron-phonon in-
teraction parameter of the Q1D electron-ion
Coulomb system at zero temperature as a fun- 0 _
ction of the transverse radius of the ions. 0 12 o/ 1

Of particular note is the extreme sensitivity of 4, to the transverse radius of
the ions, which is shown in Fig. 3. Of course, this sensitivity strongly manifests
itself in the dependence of the transition temperature on the transverse radius
of the ions. The numerical values of the transition temperature for some values
of the transverse radius of the ions are presented in Table I, where also the other
characteristic temperatures of the present model of the Q1D electron-ion Cou-
lomb system are summarized. Namely, Tp’s are the numerical solutions of
equation (14), 7, ¢'s are obtained from equation (24), T's and T.’s from equa-
tions (10) and (13), respectively. The parameters Z*, a, €, have their values
mentioned earlier.

The numerically computed transition temperature T, is higher than the
transition temperature 7, ,. The higher the temperature is, the smaller is the
ratio T,/T, ,. The difference between T and T}, is caused by the incorrect
estimation of the integral in equation (17). The transition temperature ranges
from the value about zero (for r = a) to the value over 3000K (for r = 0.3a).
As the transition temperature reaches such high values it must be compared with
the melting temperature of the whole system.

Evidently, when 7, < T,,, the Q1D electron-ion system is in a metalic state as
faras T > T,. At T, it undergoes a structural phase transition of the Peierls type.
To describe the behaviour of the system below T; it is necessary to develop a
suitable technique to treat the Hamiltonian as it was done for the Froéhlich
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model by Lee et al. [26] or for the Q1D electron-ion model in the jellium
wnvnoiamzo: by Nakane and Takada [25]. When T, > T,, the system is
in the structural state of the Peierls type and at T, it is destroyed by melting or
by chemical decomposition. For example, let us suppose that the melting
temperature is in the region 7,, ~ 1500 = 2000K. Such values of 7, can be
obtained from equation (12) with ¥, ~ 1/20 for r =~ 0.8a + a, for the other
values of r, we consider that the system “‘melts’” at T,, because of the chemical
decomposition of the surrounding organic media. Comparing 7, with T,, we
conclude that the Q1D system, which can be described by the present model

iﬁ._ the parameters Z*, a, €, given above and r < 0.5a, is in the state of the
Peierls type below 1.

Table I

The characteristic temperatures of the Q1D electron-ion Coulomb system for some vaiues of the
transverse radius of the ions

ria 7, K] T, 4 [K] T [K] T; [K]
0.1 1.70 % 10° 5.75 % 10? 1.51 x10° 3.83x 10°
0.2 2.71 < 10° 1.03 x 10° 1.08 x 10° 9.56x 10*
0.3 3.10x 10° 1.20 x 10 8.62 x 10° 4.25x10*
0.4 2.87 %10} 1.04 x 10° 7.24 x 10 2.39x10*
0.5 2.06 x 10° - 6.76%10? 6.24 x 10* 1.53x10*
0.6 9.64 x 10? 3.22 x 10? 5.49 x 10* 1.06 x 10°
07 3.80 x 102 1.06 x 107 4.90x10* 7.81 x 10°
08 8.89 x 10! 2.25 % 10! 4.42 % 10° 5.98 x 10°
0.9 1.12 x 10! 2.81 x10° 4.02 x 10 4.72x10°
1.0 7.53%x 107! 1.89x 107! 3.69 x 10* 3.83x 10°

IV. CONCLUSION

In the series of papers we have developed the microscopic model of the Q1D
system of the electrons and ions interacting through the pure Coulomb interac-
tion. To summarize the main results, in Part I the Hamiltonian of the proposed
model was derived from first principles. Determining the squared renormalized
phonon frequencies we showed in Part II that the Q1D system with the chosen
parameters exhibits an instability towards the Peierls transition. Finally, in this
paper we calculated the transition temperature.

The main advantage of the present model of the Q1D system over other 1.D
models lies in the fact that it was derived from first principles. Therefore, its
Hamiltonian properly includes all the intrachain interparticle interactions,
namely, the ion-ion, electron-ion and electron-electron interactions. Though we
have supposed that the particles of a single chain interact only according to the
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Coulomb law, our method of deriving the Hamiltonian allows the subsequent
inclusion of the non-Coulombic short-range part of the intrachain interparticle
interaction or any type of the interchain interaction. We emphasize once more
that in Part I we correctly showed the reason of the structural transition of the
Peierls type. Namely, this transition is not caused only by the electron-ion
interaction alone, as it is usually explained on the basis of the Frohlich model,
but by the effect of the mutual interplay between the electron-ion and electron-
electron interactions on the unrenormalized phonon frequencies.

In addition to fundamental physical constants, the model includes five other
eligible parameters, namely, M (the ion mass), Z* (the effective valence), a (the
interionic spacing), €, (the relative dielectric constant of the surrounding organic
media), and r (the transverse radius of the ions). With the exception of the
parameter r, all the other parameters were chosen in the numerical calculations
to correspond to a platinum compound like KCP. As the exact value of the
parameter r is not known to us (it was only estimated very roughly in Part 1),
the most important quantities were usually computed for a whole region of its
values (r = 0 + a). But this parameter strongly influences the implications
drawn from the model. For example, the transition temperature is very sensitive
to it. Therefore, it is necessary to know its exact value in order to predict the
transition temperature of a real Q1D system. On the other hand, it is possible
to determine the parameter r from the known value of the transition tem-
perature and then after a further development of the model, to compare the
calculated quantities with experimental data.

We also point out that so far we have made numerical calculations only with
the values of the parameters given above. Therefore, it is possible that a Q1D
electron-ion system with some other values of the parameters Z*, a, €, and r
does not exhibit the Peierls transition at all. We also note that we studied an
ideal, defect-free Q 1D system and a small amount of impurities can suppress the
Peierls transition. A better approximation, which goes beyond the RPA, may
also improve the obtained results. There are many other possibilities for the
improvement of the model in order that it may provide a better picture of real
Q1D systems.

Notwithstanding all this, the present model is interesting in its own right,
apart from its possible relevance to real systems, as it exhibits typical 1D effects.
It is hoped that further study will lead to the description of its behaviour below
the transition temperature.
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MOJIEJIb KBAZMOJHOMEPHON
SJAEKTPOH-HOHHON KYJOHOBCKO! CUCTEMBI
III. TETLIOTHBIE CBOVICTBA

B pa6oTe npencTasiseM HyMEPHYECKHE BRIMHCIICHHS TEMIIEPATYPHI NailepICOBCKOro Mepexoaa
B NpuGJIMIKEHHH CPEJIHETO NOJIf, NOSBIICHHE KOTOPOr'o B KBA3WOAHOMEPHOH CHCTEME NOATBEPHK IEH-
1o B [I-0ff wacTu. Ms1 ToXe HakaaLIBaeM OrPaHHYEHHS HA TEMOEPATYDPY, KOTOPHIE OIKHbI GBITH
BLINOJNHEHBI, YTOOBI ONMHMCAHKE CBOMCTB KBa3HOJHOMEDHON CHCTEMH 3MEKTPOHOB H HOHOB C Ia-
MHJILTOHHSHOM BBIBEACHBIM B [-0# 4acTH ABIANOCH MPaBUALHLIM. 3 HOJTyYeHHBIX BETMYHHE Xapak-
TEPHCTHYECKHX TEMIICPATYP BBIBEIEHDI CIEACTBHSA Kacarouyecs (pa3oBOro COCTOAHHA, B KOTOPOM
CHCTEMA KOHICHCHPYET.
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