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MODEL OF THE QUASI-ONE-DIMENSIONAL
ELECTRON-ION COULOMB SYSTEM
II. DISPERSION RELATIONS

JANETKA 1.," Bratislava

We study the collective excitions of the quasi-one-dimensional system described
by the model Hamiltonian which was derived in the previous paper (Part I). Plasmon
and phonon dispersion relations are obtained. The physics we use is essentially the
same as in the three-dimensional case. The characteristic one-dimensional effects
appear only by the logarithmic singularity of the dielectric function causing a giant
anomaly in the renormalized phonom spectrum. This anomaly is accompanied by the
lattice instability of the Peierls type.

The transition temperature is calculated in the accompanying paper.

1. INTRODUCTION

Quasi-one-dimensional (Q1D) systems are much discussed topics where
different models are applied and different physical effects analysed. A detailed
understanding of the properties of the Q1D electron-phonon models is of the
interest to elucidate the connection between the models and various Q1D real
materials. Although much progress has been achieved in the theoretical under-
standing in recent years [1}, many difficult questions remain open [2].

One of the questions to be solved is the problem of the influence of the
interplay between electron-electron and electron-phonon interactions on the
properties of the Q 1.D systems. In most theoretical treatises one of these interac-
tions is neglected or treated with uncontrolled approximations. As the Q1D
systems can undergo structural phase transitions as a result of both electron-
electron and electron-phonon interactions, the consequences of having both
interactions together have recently been of considerable interest.

In current models of the electron-phonon systems, the electron-electron
interaction is usually parametrised by an on-site (Hubbard) repulsion U bet-
ween electrons. The effect of U on the ground-state properties has been subject
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of polemics, as the existing results are highly controversial even for simple
one-dimensional (1D) models of the electron-phonon systems and depend on
methods of calculation. Within the mean-field theory, e.g., the SSH model {3] of
a 1D half-filled band system has a Peierls-dimerized charge-density-wave
ground state for an arbitrary strength of an electron-phonon coupling in the
absence of an electron-electron interaction. The Hartree—Fock method of the
treatment of the SSH model predicts that the 1D half-filled system has a Peierls
dimerized charge-density-wave ground state as long as the repulsion U is less
than a critical value U, (which depends on the strength of the electron-phonon
coupling) and a spin-density-wave ground state for U larger than U, with a
discontinuous transition at U, [4]. On the other hand, perturbation methods
[4, 5] as well as finite chain calculations [4, 6] predict that the dimerization is
favoured by an on-site repulsion U. It was also postulated that U has no effect
on the properties of a 1.D system at all [7]. The renormalization-group method
predicts a spin-density-wave instability and no charge-density-wave instability
in the half-filled electron gas with an on-site repulsion [8]. Similar ambiguities
exist also for the influence of a nearest-neighbour repulsion between electrons
(5, 9, 10].

In our previous paper [11] (henceforth referred to as paper I) the model
Hamiltonian of the Q1D electron-ion Coulomb system was obtained. The
quasi-one-dimensionality does not indicate the existence of any mechanism of
interchain coupling. It means that the electrons of the system are confined to a
tube whose radius is set to be equal to the transverse radius of the ions. The
Hamiltonian derived in I is actually the extension of the Frohlich Hamiltonian
to the plasma Hamiltonian. The only interaction involved in the Fréhlich
Hamiltonian is the electron-phonon interaction. In addition, the Hamiltonian
in I not only involves the electron-ion interaction but the electron-electron
interaction as well. Moreover, the strength of both interactions as well as the
unrenormalized phonon frequencies are not parametrised but they are properly
derived from first principles. The main aim of this paper is to study the influence
of both the electron-ion and the electron-electron interactions on the unrenor-
malized phonon frequencies to get the renormalized ones. In this way, one
simultaneously obtains stability conditions for the system, as the squares of the
renormalized phonon frequencies should not posses negative values.

It is worth mentioning that the same stability conditions provide a clue to the
origin of the structural instability in the 1.D Frohlich model {12, 13]. To reveal
this instability we employ the expression for the squared renormalized phonon
frequencies £2),(q) given by
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where €2(g) is the unrenormalized phonon frequency, g is the strength of the
electron-phonon coupling and A,(g, 0) is the static Lindhard function. Com-
pared with the known results of the three-dimensional (3D) treatment of the
Frohlich Hamiltonian {14, 15}, the only difference is the one-dimensionality of
Ar(q, 0). However, the singularity of the 1D Lindhard function gives rise to an
anomaly in the renormalized phonon spectrum. in the 3D case, A;(g, 0) has only
a smooth anomaly causing the generally shallow anomaly of ordinary metals.
In the 1D case [16], on the contrary, A;(q, 0) at zero temperature is negative and
strongly peaked at g = 2k, (k. is the Fermi wave vector). Thereupon, .@w. (2k)
becomes negative. This violation of the stability condition indicates that the
system becomes unstable and leads towards a structural transition.

In this paper, we deal with our model of the Q1D electron-ion Coulomb
system. The outline of the paper is as follows: in the next section we briefly
sketch the used model of the Q1D electron-ion Coulomb system defined in 1. In
Sect. ITI we treat the model without taking into account the effect of periodicity
of the lattice and derive the plasmon and phonon dispersion relations in the
jellium approximation. The influence of the Umklapp processes on the phonon
dispersion relation is considered in Sect. 1V.

I1. THE HAMILTONIAN

Let us briefly summarize the investigation of the Q1D electron-ion Coulomb
system made in I, recapitulating the use notation. The system is composed of
electrons and ions interacting according to the Coulomb law. The electrons and
ions are confined to a tube formed by a surrounding insulating media. More-
over, the ions of the system are constrained to move only along the tube as we
assume that the radius of the tube is equal to the effective transverse radius of
the ions. This is not the case of the electrons which can move freely within the
tube without any directional restrictions. However, we suppose that all the
electrons are at the lowest energy subband related to their motion in the
direction perpendicular to the axis of the tube. Furthermore, the electron
probability density at the lowest subband is replaced by a constant value.

Using all the above assumptions, it was shown in I that the “classical”
Hamiltonian of the Q1D electron-ion system has the form:
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where E, is the equilibrium position interaction energy of the ions, Q(k) are the
normal mode coordinates of the ion oscillations, P(k) is the momenturn con-
jugate to Q(k). The unrenormalized phonon frequencies £2,/(k) are defined by

(k) = (k) + aMoﬁbw (k + K,) — $5(K)] (3)
with '
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where a is the interionic spacing, L is the longitudinal size of the system and K,
is the reciprocal lattice wave vector.

The functions w(q), u(q), v(q) are the ion-ion, electron-ion and electron-elec-
tron interaction matrices, respectively. They obey the relation

W@ _
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As usual m, p;, z; are the mass, momentum and position of the jth electron and
M, Z, are the mass and position of the ath ion. Its displacement from the
equilibrium position Z,, is given by
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where N, is the number of the ions in the system. It is related to the number of
the electrons by Z*N, = N,, where Z* is the effective valence. The sum over k
is performed in the first Brillouin zone and that over g in the whole wave space.
So far, the only difference between the usual 3D plasma Hamiltonian and the
present one is the one-dimensionality. However, the interaction matrices signifi-
cantly differ from their 3D counterparts:
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where e is the elementary charge, € is the dielectric constant of the surrounding
organic media and r is the transverse radius of the ions. The function y(x) is
given by
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1/2 — K;(x) I,(x)

y(x) = N (8)

x
where 1, (x) and K,(x) are the modified Bessel functions of the first and second
kind, respectively.

Another important result obtained in I is the form of the Q1D Fourier
transformation of Poisson’s equation:

Vi(a) = v(g) de(9); ®

where V,(g) is the Fourier transform of the screening potential and 6p(g) is the
Fourier transform of the induced change in the electron density.

The last result to be mentioned is that Z*/2 represents the degree of the band
filling, because

k=22, (10)

where k; is the Fermi wave vector and z/a is the 1D Debye wave vector.

The numerical values of the parameters Z*, a, €, (the relative dielectric
constant of the surrounding organic media) used throughout the paper are
taken from [17] and correspond to a platinum compound like KCP.

In the next section we shall obtain the dispersion relations for the jellium
approximation of the ionic behaviour. In this approximation, all effects of
periodicity are neglected. As usual, in the expansion of the electron-ion part of
the Hamiltonian we keep only the linear term in 6Z, and neglect the next terms.
If we further express the terms including the summation over the positions of
the electrons in the second quantization, we get
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As we shall not carry out any explicit Bloch calculations we simply take the
energy E(q) appropriate to the free electrons, i.e., E(q) = #2q%/(2m), (h is the
Planck constant). Similarly, the operators c,(g) and ¢, (¢) act to annihilate and
to create an electron in the 1D plane-wave state with the wave vector ¢ and the
spin o.

235



I11. DISPERSION RELATIONS IN THE JELLIUM APPROXIMATION

The procedure we use in this section is quite similar to that of Pines [18] for
the corresponding 3D case. The essence of this procedure is deriving equations
of motion of the electrons and the ions. Solving these two coupled equations we
directly obtain an equation from which the eigenfrequencies of the Q1D system
can be calculated.

At first we introduce the operator of an electron-hole pair with the wave
vector —gq and the spin o:

0:(9, ¢)) = ¢5 (@) colqs + 9)s (12)
whose equation of motion is
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where o(q) is the electron density fluctuation operator. It can be expressed in
terms of g,(q, q,) as

m@MM@q@,@. . AKV
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We now make the RPA approximation in (13), i.e. we keep only the terms with

g, = q and further we replace the operators ¢/ (q,)¢,(q,) and c;(q + q,) %

x ¢,(q + ¢,) by their expectation values between the plane-wave states. Then
equation (13) reduces to

0
if P 2.(9, ) = [E(q + q\) — E(q))] 0.(g, q,) +
(15)
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where f(q) is the average number of the electrons in the plane-wave state, i.e.,
the Fermi—Dirac distribution function.
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If we take the time Fourier transform of (15), we easily obtain
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where 0,(g, g, @), (g, ®), 0(g, @) are the Fourier transform of ¢,(g, 4,), @(9),
and o(q), respectively. The small positive imaginary part in the denominator
arises from the choice of the retarded boundary condition.

Summing up over all states (g;, 0) in equation (16) we obtain

12
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where AX(g, @) is the retarded 1D Lindhard function defined by
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In the exact form, it can be calculated only in the case of complete degeneracy,
i.e., at zero temperature:
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It must be mentioned here that the imaginary part of AX(q, o) is different from
zero only for frequencies which obey the relation .

o, < o] < o, (20a)
where
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and @ = dmla 2k, + _%_, (20b)

the energies A, and 7w, represent the minimum and maximum energies for the
excitation of an electron-hole pair with the wave vector g. As expected the 1D
Lindhard function at zero temperature (equation 19) diverges logarithmically at
the upper and lower thresholds for an electron-hole pair excitation.

Now, we write down the equation describing the motion of the amplitude
Q(g) of the lattice vibration

g Q(q) + 2(9) Q(g) = — i qu(q) A@vs 0(g)- (21)
or? L M
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The time Fourier transform of (21) has the form
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The two equations (17) and (22) are consistent only if
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is the retarded dielectric function of the Q1D electron Coulomb gas. It was first
obtained by Lee and Spector [19]. The left-hand side of equation (23) re-
presents the dielectric function of the Q1D electron-ion Coulomb system in the
jellium approximation.

Equation (23) serves for determining the eigenfrequencies of the present
model of the Q1D system in jellium approximation. There are two branches to
the solution for equation (23). The first is the high-frequency branch (the
plasmon mode) in which the electrons and ions oscillate out of phase. Because
of their much greater mass the ions are not able to follow the rapid electronic
motion, they behave almost as_a uniform positive background.

To obtain the plasmon dispersion relation at zero temperature we use equa-
tions (19), (25) and rewrite equation (23) in the form

| mNQN N \3“& .DONAV
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(26)

For a small g (g <€ r ") we can expand the right-hand side of equation (26) and
we obtain
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SNR m:h chSv_H_ + .QMMSH_ Awd

We use 85@0: 22(q) ~ $2(q) valid for a small g. It follows from the condition
of the electrical neutrality of the whole electron-ion system (see I). Moreover,
because of equation (5) it is valid for all ¢ in the present model.
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The solution of the equation (27) is then

o5q) = wm ?s% + Nasv. %)

As in the 3D system the influence of the ions on the plasmon frequencies is of
the order (Z*m/M)'?, i.e., it is negligible. However, the plasmon frequency
spectrum of the Q1D system, in contrast to the 3D system, tends to zero as
g — 0. This is the consequence of the “weakness” of the Coulomb interaction in
the Q1D system. It was properly explained in 1 when we were discussing the
unrenormalized phonon dispersion relation.

If we fully neglect the role of the ions in determining the plasmon dispersion
relation, we get
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Fig. 1 shows the plasmon dispersion curve of the present model of the Q1D
electron-ion Coulomb system for Z* = 5/3, a = 3.4 % 107"%m, €, = €/g, = 2.6
(&, is the dielectric constant of vacuum) and r = a/2. The electron-hole pair
excitation spectrum is also shown in Fig. 1 (shaded region). The “hole” in the
spectrum is a general feature of any Q1D electron gas. As a result of this “hole”,
low-energy electron-hole excitations are allowed only for ¢ =~ 0 and g = 2k,[20].

An interesting feature of the Q1D plasmon dispersion curves is that they
never enter the region of electron-hole excitations, i.e., in contrast to 3D metals,
plasmons in Q1D systems are not Landau damped [20]. This result can easily be
seen from equation (29). Remembering that cth(x) > | for all positive x, it
follows that @,(q) = @, the maximum of the electron-hole excitation fre-
quency.

Fig. 1. Plasmon dispersion law of the Q1D elec- 0 1 2
tron system. q/kq
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A similar dependence of m,,(g) on g as given by equation (29) was numerically
obtained by Lai and Das Sarma [21].

The second branch is a low frequency phonon mode in which the electrons
follow the motion of the ions. Since the phonon frequency is generally much
smaller than any structure in the electron-hole excitation spectrum, it is suf-
ficient to approximate the phonon dispersion relation by

b~
Qg = Qlg) — Blg) + =D (30)
mHAQu Ov
At zero temperature one las
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Equation (31) contains a sharp logarithmic singularity at ¢ = +2k. If
..DWAN»\V < 2k, ie., if w2k) < u’(2kp)/v(2k)), equation (31) leads to the
imaginary phonon frequency at g = + 2k,. This unphysical result expresses the
Peierls instability of the Q1D system. Such a model of the Q1D electron-ion
system in the jellium approximation but interacting via the 3D Coulomb interac-
tion was studied by Kurihara [22], Nakane and Takada [23].

However, in the present model Q2(g) = £}(q) and the phonon frequencies
are real for all g. Though the 2k, phonon frequency becomes soft at zero
temperature, i.e., £2,,(2k) = 0, we shall not deal with the phonon dispersion
relation obtained from equation (31) any longer. The reason for this is that it
seems to be an artefact because the jellium approximation is valid only for
small g compared to 2k,. To obtain more reliable phonon dispersion relation, the

Umklapp processes have to be taken into account. This is done in the next
section.

1 T T
x
5 £5
<
Cl g«
Bz
12+ 7
0 | Fig. N Phonon dispersion law of the Q1D elec-
0 1 2 3 tron-ion Coulomb system in the jellium ap-

qlke proximation.
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At the end of this section we mention that for small ¢ equation (31) can be
approximated by

N*mww
Q@) = ts Awb g as

Except for the factor 1/3 we get the expression which is valid for the squared
renormalized phonon frequency at small g in the 3D case.

The phonon dispersion relation given by equation (31) is shown in Fig. 2 for
Z*=5/3,a=34x10""m, g =2.6,r= al2.

IV. THE PHONON DISPERSION RELATION INCLUDING
THE UMKLAPP PROCESSES

We shall now consider a more comprehensive calculation of the renormalized
phonon frequencies, which also includes the Umklapp processes. QOur procedure
follows that of Callaway [24] for the corresponding 3D case. The funda-
mental point of this procedure is a self-consistent calculation of the change in
the electron density do(z). This change, caused by the displacement of the rons
alone, influences in turn the motion of the ions. In this way, the electrons which
readjust themselves to reduce their effective interaction with the vibrating ions
cause a change in the ion-ion interaction. They mediate an effective ion-ion
interaction from which the effective dynamical matrix will be obtained.

To determine the effective ion-ion interaction we first consider the change in
the wave function of an electron dy(q;, z). This change is produced by the
change of the electron-ion potential du(g) caused by the displacement of the bare
ions and by the change of the electron-electron potential dv(g) caused by the
readjustment of the electrons alone. Using the first order perturbation theory we
have

2y
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The distortion of the electron wave function gives rise to the change in the
electron density. To the first order we get

op(z) = M\S_:E*S_, z) oyl(qy, z) + Sy*(qs, 2)y(qy, 2)] =
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To simplify the calculation we suppose that the unpertubated wave functions
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(36)
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is the static 1D Lindhard function. If we further use the Q1D Fourier transform

of Poisson’ i
mxnﬂwwwww mm m@:ﬂ:wu: Gv. to replace 6v(g) by v(q) S0(g), we easily obtain the final
or the Fourier transform of the change in the electron density:
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o o o (g, 0) is the static dielectric function of the Qo1D

The effective ion-ion interaction H¢ is a sum of two terms:
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electron-mediated ion-ion interaction and the second is the
T i . i
he calculation of the squared renormalized phonon frequencies is now
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The term containing €2, is the contribution of the ions of the lattice and the term
containing £2, is the contribution of the electrons determined by the properties
of the electrons in the periodic field of the lattice. The function bm\_. r(k) is an
even and periodic function with the period of the reciprocal lattice wave vector
as it could be expected.

The preceding calculations should be improved in several respects. We have
treated the electron-electron interaction in a simple way, amounting to a Har-
tree approximation. Each electron has been assumed to move independently
except in an average field produced by the other electrons. Neither exchange nor
more detailed correlation effects have been taken into account. However, con-
cerning the renormalized phonon frequencies we confine ourselves to equation
(39) as the improvement of the calculation is not an easy task, especially for
Q1D systems.

In the present model, £;(q) = QX(g) and equation (39) reduces to

ek, 0) K7olerlk + K, 0)  er(Ks, 0)

Q. (k) =

For small k, we have the following approximation
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where at zero temperature
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As expected, £, r(k) is proportional to k. In screening the ionic motion, the
electrons act to reduce the long wavelength phonon frequency from Q,(k) to a
linear function k. The plot of the function @,(x) is shown in Fig. 3. As before,
we have chosen Z* = 5/3,a=3.4x% 107 % m, g, = 2.6.

The condition for the dynamical stability of the lattice requires @, (k) > 0.
However, it can be seen in Fig. 3 that there is a region of values of the par-
ameter x (x ® 0+ xo) in which the function @,(x) is negative. The negative
values of @,(x) yield negative values of €3, (k) given by (41). This indicates the
Jattice instability of the present model of the Q1D system with the values of the
parameters Z*, 4, €, given above and r < Xoa. In this section, we also show that
the lattice is unstable not only for r < x,a but for all physically interesting values
of parameter r (i.e., for r < a).

The plot of the squared renormalized phonon frequency at zero temperature
as a function of the wave vector is shown in Fig. 4a and Fig. 4b for two different
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values of the transverse radius of the ions. Again Z* = 5/3, a = 3.4x 107" m,
€ = 2.6, r=0.5a and r = 0.9a, respectively.

There is a giant anomaly in the renormalized phonon spectrum, which
appears in the wave vectors ¢ = * (2k; + K,). For our choice of the parame-
ter Z*, the wave vector k = K, — 2k, = ma/3 is the only positive wave vector in
the first Brillouin zone in which the anomaly appears). The origin of this
anomaly is the singularity of the 1D Lindhard function at 2k, caused by the
sharpness of the Fermi surface. If the Fermi surface is sharp, one has a different
contribution to Ar(g, 0) from an electron-hole pair excitation when g > 2k,.

ary

@ (x)

- [

Fig. 3. The plot of the function @,(x) as defined
0 xg 12 x 1 by equation (42).

Namely, for such wave vector transfers it is no longer possible to excite an
electron-hole pair. Moreover, in the 1.D case, since the Fermi surface is restric-
ted to a pair of points such as g, = + 2k, the nesting condition E(g,) —
— E(g, + 2k = 0 (the denominator of equation (36)) is satisfied over the entire
Fermi surface resulting in a logarithmic singularity of A,(2k,, 0). Thus, one
expects that the corresponding anomaly in the phonon spectrum is a characteris-
tic of all Q1D electron-ion systems, and is not simply a characteristic of the
method of the calculation (the RPA approximation in our case).

In the present model the phonon anomaly is so giant that the condition of the
lattice stability €27, (k) > 0is violated. The squares of the phonon frequencies
in Fig. 4a and Fig. 4b possess negative values leading to imaginary phonon
frequencies. This unphysical result indicates the lattice instability of the Q1D
system with respect to the Peierls transition accompanied by the formation of
charge-density-waves. Fig. 5 shows the squared renormalized phonon frequency
at the wave vector 2k, as a function of the transverse radius of the ions. Again
the values of the parameters Z*, a, €, are chosen as before. As the squared
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renormalized phonon frequency £2), ((2k/) is negative over all the region of
physically interesting values of the parameter r, we conclude that the present
model of the Q1D electron-ion Coulomb system with the parameter Z*, a, €,
given above always exhibits the lattice instability of the Peierls type.

1/4 T T 1/4 T T
S =z
GlEE o i e .m.m 0 i
-4 - -1/4 =
-1 i i A2 i L
3 2/3 1
0 13 23 falki 1 0 1 / tealit

Fig. 4. Squared renormalized phonon frequencies of the Q1D electron-ion Coulomb system as a
function of the wave vector, a) for r = 0.5a and b) for r = 09a.

However, with increasing temperature the singularity of Ay(2k, 0) is smooth-
ed out by the smearing of the Fermi—Dirac distribution function (the numera-
tor of equation (36)). This results only in a sharp peak of A;(2k,, 0), which
progresively weakens with increasing temperature. Consequently, the phonon
anomaly at 2k, becomes less giant and above some temperature T, the squares
of the renormalized phonon frequencies do not possess negative values any
more. The temperature 7T, (called the transition temperature) is calculated in our
accompanying paper,

P 1\)0 T
sl
3 s
R Rty
|J\A L
12
Fig. 5. Squared renormalized phonon frequency
at 2k, as a function of the transverse radius of 34 " " 1
the ions. rfa
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V. CONCLUSIONS

In the present paper we have dealt in detail with the dispersion relations of
two types of excitations of the Q1D electron-ion Coulomb system. As in every
electron-ion Coulomb system, there are also in the present Q1D system three
types of elementary excitations: plasmons, phonons and quasi-particles.

Plasmons are collective excitations of electron density. Since every electron
feels the force caused by every other electron, however distant it may be, each
electron is correlated with all the other electrons. Most of the energy of the
longrange part of the Coulomb interaction goes into a correlated collective
motion of the electrons in which their density fluctuates. Such an oscillation, a
plasma oscillation, has a high energy of excitation and usually is not excited.
Therefore, it can be ignored for most phenomena.

Phonons are normal modes of vibrations of the ions which make up the
lattice. The original bare phonon frequencies, calculated using only the direct
ion-ion interaction, are screened due to the electron-ion and electron-electron
interactions. In the Q1D system the screening not only shifts the phonon
frequency from £2,,(k) to a linear function of small k but causes a giant anomaly
at 2k, as well. This anomaly can be regarded as the result of the effects of the
electron-ion and electron-electron interactions on the unrenormalized phonon
frequencies. Because of the perfect nesting of the Fermi surface in the 1D
electron system, this anomaly is so giant that at some temperature the softening
of the phonon frequencies appears followed by the lattice instability below this
temperature. We have already mentioned that our accompanying paper deals
with the calculation of this transition temperature.

Quasi-particles of the present model of the Q1D system are the excitations of
the electron system. They have been mentioned only very briefly throughout this
paper. Moreover, they are been described only in terms of single electron
excitations. But it is necessary to point out that the electronic spectrum is
influenced by the appearance of the lattice instability. Studying the 1D system
described by the Frohlich Hamiltonian, Lee at al. [25] showed that a gap
appears in the electronic spectrum. In one of our next papers we intend to deal
also with this problem.

At the end of this paper, we emphasize an important circumstance. Although
we have revealed the existence of the same lattice instability (the Kohn anomaly)
as known in the 1D Frohlich model there is still an advantage of the present
model when compared with the Fréhlich model. Namely, the present model was
derived from first principles.

The main shortcoming of the Frohlich model, as it was pointed out by
Maksimov and Khomskii [15], is the absence of a consistent method of
allowing for the electron-electron Coulomb interaction. When the Froéhlich
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Hamiltonian is being written down it is usually assumed that the strength of the
electron-phonon coupling and the phonon frequencies should be taken with an
allowance for the screening of the electron-ion and ion-ion interactions by the
electrons. However, there does not exist any consistent method of division of the
Coulomb interaction into the part that has already been taken into account in
the bare values of the constant of the Frohlich Hamiltonian and the part that
subsequently manifests itself in the renormalization of the bare phonon frequen-
cies as a result of the electron-ion interaction. Thus, one has to be careful while
drawing conclusions from the Frohlich model as the electron-ion interaction is
taken into account in two steps: first, in the choice of the bare phonon spectrum,
secondly, in the computation of the renormalization of the phonons [26].

As mentioned, within the framework of the Frohlich model the anomaly in
the spectrum of the actually observable phonons (equation (1)) and the lattice
instability are related only to the change that occurs in the effective inter-ion
interaction as a result of the polarization of the electrons [15]. On the other
hand, as can be seen from the treatment in.this paper, the present model of the
Q1D system yields the other interpretation of the lattice instability. First, we
introduced the unrenormalized phonons, i.e., the plasma oscillations of the ions.
The subsequent allowance for the interaction of the unrenormalized phonons
with the electrons leads to their renormalization, which yields the renormalized
spectrum of the phonons excitations of the Q1D system (equation (39)). The
onset of the lattice instability and the appearance of negative values in the
renormalized phonon spectrum can thus be regarded as the result of the effect
of the mutual interplay between the electron-ion and electron-electron interac-
tions on the spectrum of the unrenormalized phonon frequencies.
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MOJEJb ﬂw>wSOEL~Ome:O§ 3JIEKTPOH-MOHHOM KYJIOHOBCKOM CUCTEMbI
I1. JMCNEPCUOHHBIE COOTHOUMEHUSA

B paboTe paccCMOTPHUBAIOTCH KO:ITeKTHBHbIC BO36YXICHHA KBA3MOJHOMEPHOMN CHCTEMBI OMTUCHI-
BaeMOfl MOIEILHBIM FaMUIBTOHHAHOM KOTOpSIit ObL1 BhIBENCH B npenbutyieit cratbe (Hacts D.
Tlo:1y4eHbl AUCTIEPCHOHHBIC COOTHOIIEHHS AAs MAA3MOHOB H (OHOHOB. du3nka, KOTOPOH MOJb-
3yeMCS B CYLIHOCTH T2 XKe caMasd KaK B TPEXMEPHOM CiIy4ae. XapakTepHbIC onHoMepHbIe 2OGEKTHL
[OABIAIOTCA TOJIBKO MOCPEACTBOM norapuMHIECKOi CHHIYIAPHOCTH QHIIEKTPUYECKOH TPOHH-
LHaeMOCTH, KOTOpas BhI3bIBACT GONbLIYEO AHOMAJHIO B IEPCHOPMHPOBAHHOM (OHOHHOM CIIEKTPE-
J1a aHOMA.TMsl COMPOBOXAaeMas peleTOYHOR HEYCTOMIUBOCTRIO naiepICOBCKOTO THMA.

Temmeparypa NEpeXoia BeIMUCIACTCH B CONMpOBOXAAEMOH CTAThE.
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