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SSQM AND NONLINEAR EQUATIONSY
HRUBY, J.,% Prague

The method of obtaining the superpartner potential in supersymmetric quantum
mechanics (SSQM) is discussed in connection with nonlinear equations and reflection-
less potentials. The application of the SSQM in Plasma Physics is discussed.

L. INTRODUCTION

The study of the particle-like behaviour of nonlinear fields ori ginally initiated
by Einstein to systematically derive the motion equations of a particle in an
external field, took a new turn with the discovery of the soliton solutions [1].

The soliton-type properties have been found by now in a great variety of
nonlinear physical systems such as the Korteveg de Vries (KdV), the sine-
Gordon, the nonlinear Schrédinger (NSL) and others,

In the seventies theoretical physics has developed a new fruitful conception
of supersymmetry, whose main idea is to treat bosons and fermions equally [2].

The interesting advantage of Supersymmetry is the unambiguous way of
incorporating the fermions into the soliton system; it was first done for non-
linear equations via direct supersymetrization in ref. [3].

From this supersoliton theory, which is given by the supersoliton Lagrangian
in the (1 + 1) space-time dimension

L= w [(0,0) ~ V(0) + v(id + V(o)) ], (1.1)

where ¢ is a Bose field and v is a Fermi field, we can obtain SSQM as a
restriction to the (0 + 1) space-time dimension.
Indeed, if we substitute into (1.1) the following restriction:
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where y = A.ﬁ_

v, the components of which are to be interpreted as anticommut-
Ing c-numbers and 0} denotes the usual Pauli matrices, then 1, - Lgsou, where:

| — w (@)~ ¥2(x) + y7(i2, + o)) (12)

The corresponding Hamiltonian hag the known form:
|

_ _. .
S%:nmmw.vm -\Ng+m;§, vl V'(x), (13)

the NLS eq. and the KdV eq. and also the application of SSQM in Plasma
Physics.

2, SUPERSYMMETRIC QUANTUM MECHANICS

We shall start with the Schrédinger factorization in QM: Let us assume 4
one-dimensional Schrédinger eq.

QN
(-Z+ V) ) v = B @)
dx
and the factorization in the form
d —-d
—toli—+v)y=Ey.
A& v A% v e (22)
If we denote
AHHHM._.F 2.3)
. dx

We can write
A*Ay = Ey = Hty,
but it gives

ATAT = HY = llﬁ+e~+e = llﬁ.*.w\
dx? ! dx? t
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Let us choose the zero of energy so that the groundstate ¥ in H, has zero
energy

Howd = A" A~y =0,
implying from
Ay =0 2.9

This is a first-order differentia] eq.

A;%%ﬂvvsup

constraining
+
= s’.w . (2.5)
Yo

If we consider the factorization in the form

A,miv (S+0)v=sv.

dx dx
we get
@ ¢
\AI\A.*"'I'.II—YQN'C&”"I*I“\I”NNI. AN.QV
Q.XN ) QHN

Now suppose ¢+ is any eigenfunction of H,
Hoy*=E y*; (2.7

then A~H, y, = E (4 y,)= A A Ay, .

Either4-y, =0 (sothat E, = 0and ¥, is the ground state)or H (4~ y,) =
=E (47y,). .

Thus, every eigenstate of i + €xcept the ground state gives rise (via 47) to an
eigenstate of H_ with the same eigenvalue.

"The ground state in H +» Wwith zero energy, does not correspond to any
eigenstate of H_. It means that the Hamiltonian H + has the same spectrum as
H_ plus one ground state more.

If we denote the solution v, of the zero-energy Schrodinger eq. with H_

QN , | _
A; ' w.v Vo = —Vou+ @ =)y =0, (2.8)

we get
G = e F AN.@V

Y
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and by comparing with (2.3) we have:

I
Vi =—.

. (2.10)

Mrwrmmﬁo:ﬁ:o: presented here can be written in a supersymmetric wa

n i .

€ matrix formulation Hggo1 (1.3) becomes a 2 x 2 matrix as well: ¢
Q“

—— 4+ ¥x ) 0
o2 Tr + o) &

_
M . - S - @

Hyo=2H —(H" 0 (4*4~ o
SUSY SSQM Ao H-]= 0 A A+ HAQ, @J, AN;NV

where the “supercharges™ are defined

(2 ) et %)

The other relations are

H SSQM

Then

2 _ 2 e
Q' = Q%) = 0, [Hsysy, Q] = T&maf Q'1=0. (2.13)
The eigenfunctions of Hgysy are:

.
Vsusy = Aﬁ;v
U4

Q_\\E\E\H A.\Wv unles A4-y* =0,

ot Vsusy = Aqm+v

and they have the properties:

é@ .\\+ 113 L 1)
can call the levels A 0 v bosonic™ and the levels A olv “fermionic” in

. o - 2 s s
Sowﬂ oﬂmr::M: fermionic” nature of the “super algebra” in relations (2.12),(2.13)
. e theory o.m the spectral transforms and solitons [5] the mo::w&smon.
Ctorization (2.2) is equivalent to the Miura transformation between ¥ v
+
V, =v 4o,
which connects the Kdv e

valid for V_, because the
V> —yp,

q. with Em.S.o&mma KdV (mKdvV) eq. The same is
mKdV eq. is invariant under the transformation of
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In this sense the Miura trasformation represents the supersymmetric ““square
root”.

3. THE SSQM AND REFLECTIONLESS POTENTIALS IN NONLINEAR EQUATIONS

First we show how reflectionless potentials appear in a toy NLS model with
a Grassmann one-component real variable 6.
The NLS eq. has the form

(0, + %+ 1€ (x, DN E(x, ) =0. (3.1
This eq. 3.1 has the known particular solution

&(x, 1) = e’ = sech -3

L L2’
Using the variable  we shall define the superfield E(x,, 6) in the following way:
E(x,, 0) = & (x,) +10y(x,), (3.3)

where x, is the usual two-dimensional space-time commuting coordinate, & (x,)
is the solution of the NLS eq. and y(x,) is a new field.
Now, we postulate the NLS eq. for the superfield E(x,, ) as follows

(i0, + & + |E(x,, O E(x,, 6) =0.
Using the anticommutativy of 8, we obtain two independent equations of
motion coupling & (x,) with w(x,)
10, +02+|6(xHE(x) =0, (3.4a)
(i0, + 02 + 2|€ (x,)I? ixb — EX(x) v*(x,) =0. (3.4b)

The first eq. (3.4a) is the NLS eq. with the particular solution (3.2). We can
see immediately that the system of the coupled egs. (3.4a, b) has the solution
& (x, t) in the form (3.2) and the solution y(x, ), which has the form
gt oyl
v, n=et L (3.5)
x
ch

L2

L>0. 3.2)

From (3.5) and (3.2) it follows directly
E(x, )= y(x, 1). (3.6)
It means that eq. (3.4b) can be rewritten as
(0,4 3+ | wlx, O w(x, H =0,
which is the nonlinear eq. of the same type as that for & (x, 7).
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Now, if we take E(x, 0

e in the form (3.2) and put it into the eq. (4.9), we

. L-?
i0,+ 0 + vix, £)=0. 3.7
ch? X .
L2
If we make the following substitution
Up=L2, g=t [

N3

in eq. (4.7), we can rewrite it in the following form

QN A Q
, + m + o ”
dx? v orﬁxv % ‘ @8

which is the one-dimensional Schrédi i
: rodinger eq. with th i
~ Qo.\ovNQx, the solution of which is given in _,M.‘ [6] " e poleti]
It is well known that the transmissio .

well Ly S knowr n coefficient in the potential ~ U,/ch2aX-

sh? nJE
D= i .
: . 4.9
MTNN. ml*inuomNHN m'@ A v
a 2V @
An interesting phenomenon arises, when the following condition is valid:

[Udl = N(V + 1) 2.

(4.10)
Then the transmission coefficient is trivial, i.e. D = |.
With our substitution ¢ = % L~ we have:
2 o
|Ugl = w NN+ 1)L?;
2 5 @.11)

thus, it means that the potential will not reflec
[Uol are follows L=, 31-2 612

Now we show the relation of
SSQM.

It is well known [5] that a potential of the form
198

t, when the corresponding values

solitons in the non-linear KdVeq. and the

e

Ux)= — _

Lich? X

L2

can be regarded as one-soliton solution of the KdV eq. for t =0, i.e. of the
equation:
u,— 6uu, +u,,. =0. 4.12)

The KdV one-soliton solution for all ¢ is

u(x, t) =—
RIWN
N\N

L2

Let us consider now a function v(x, t) satisfying the mKdV eq.:

L*ch?

1 2 _
o+ 65517+ 0uc =0, @13
Then, if we define
Vo —y— 1 , 4.14)
217

as usual in SSQM, it can be easily shonw that V_ satisfies the KdV eq. The same
is valid for V,
— g2 b 4
V,=v"+0o, Y (4.15)

If we take (4.14) as the one-soliton solution of the KdV eq., then with a
suitable boundary condition on v one can interpret ¥, in (4.15) as a two-soliton
solution of the KdV eq. and it corresponds to N = 2, the above mentioned
potential.

This is shown by Sukumar in ref. [7], where the general connection between
the N-soliton solutions of the KdV, SSQM, the inverse scattering method and
the construction of the reflectionless potentials is discussed.

We shall now concern ourselves with the correspodence between the SSQM
and the super NLS (SNLS) eqs.

4. THE SUPER-GENERALIZATION OF THE NLS EQUATION

A super extension of the Ablowitz-Kaub-Newell-Segur scheme [8] was
presented by Giirses and Oguz in ref. [9] to obtain the SNLS model.
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Their extension gives the following SNLS €qgs.:
&, +&, — 2k\|E 1 — dy .y — dk,Eyy* = 0, 4.0
i, + 2y, — &, _%:.\lﬁc%ﬁlﬁ%ﬂ.\,uou 4.2)
where k; is a constant.
Here we shall present another su i ich i
pper extension of the NLS. i
correspodence with SSQM. e

We can immediately see that the €q. (4.1) for k, = -k has the solution
. 2
&€ (x, 1) in the form (3.2) when

Ve _
i kyf . (4.3)

Eq. (4.3) is the equation for y, where & is the one-soliton solution (3.2)
We search for the solution of eq. (4.3) in the form .

Vx, 1) = ey (x)
and we get

y(x, 1) = e oqul o2 k, arctg mﬁv. “4.4)

It can be directly shown that the functions (3.2 i i
noxlinar g, (3.2), (4.4) satisfy the following

. 1 1
1y, + .\\?4 + All +— _%_uv f\..T N\ﬁm% .\\W.T \ﬂu&m.«.\\* = Ou AL.MV

4L L
which is a modification of €q. (4.2).

Thus egs. (4. 1) and (4.5) are in correspodence wi
. . th SSQM.
In the following way: Let us put g’ _ QM It can be shown

d
A, =+ —
+ =+ I + k)6 (x). (4.6)
Then
NN - QN 2m2
Hllqamlf\&% T k&, 4.7
From eq. (4.3) we get
Vo= ~ki Sy,
f\k\« = l\ﬂm&m&ﬁ\‘ \ﬂw&n.\\k == N%kﬂ\ + \ﬁw% Nﬁ\u A#.wv
Yoo ke,
v
but it is the Schrédinger eq. for V_ in SSQM.
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5. THE APPLICATION OF SSQM TO NONLINEAR EQUATIONS
IN PLASMA PHYSICS

First we pay attention to the Zakharov Z egs.
i&,+6,—nE=0, (5.1)
n,—m+|6, =0, (5.2)

which describe the propagation of the Langmuir waves in plasmas.

Here, & denotes t he slowly varying envelope of the highly oscillatory electric
field and # is the ion density perturbation.

In connection with our application we shall discuss only the so-called quasi-
static limit of the Z egs. neglecting the term #, (the limit of infinite ion mass).
Then eq. (5.2) has the form

(n+161).=0, (5.3)

which implies n = — |€|? if n and |£|* are square-integrable.
The substitution of this expression for # into (5.1) yields the NLS eq. (3.1).
It is well known that egs. (5.1), (5.2) have one-soliton wave solution

%Hﬁmoo:_HkIHolE“_mxw_mwmcxlmﬁwcwl : VN.T:L, (5.4)

L LJ2(1 =) 4 20%(1 — v?)

_%_N
n= T G.&
where L > 0, v, x, and ¢ are constants.
It is clear that the solution (5.4) tends to the particular one-soliton solution
3.2)
ir\1 x
& (x, 1) =exp Awhwvh sech I (5.5
and n(x) = — |&]?, (5.6)

forv=0,x=0¢=0.

Some experimental evidence of the existence of these solitary waves has been
produced by Antipov [11].

If we put the solution (5.5) into eq. (3.1) we obtain

d? 1
oS T\ wi(£) = Eyw(E), (5.7)
dx 5 45 X
Léch* ——
L2
which is the eigenvalue eq. H,y, = E,y,, corresponding to eq. (3.1).
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In eq. (5.7) we denote the eigenvalue E, = —y? = FN and it corresponds
2L
to the eigenfunction

1
¥, = — sech —~

L L2

Now we shall consider the ion density perturbation

n=—|yP= ll_lmnowu d

L? L2
as the potential in the eigenvalue problem (5.7) and using SSQM we shall

construct other reflectionless potentials as “supperpartners”.
We can see that .

1s the superpartner to the Hy= —— 44,

where the potential ny does not support any bound states, meanwhile n, supports

a simple bound state at the energy E, = — 1

2L%
Q:.uom_bm no = 0, H, is then the free particle Hamiltonian and the reflection
coefficient of n, is Ry(k) = 0 for the positive energies E = k2,

Rk ==k p by,
i) + u\ﬂ

which is zero for Ry(k) = 0. But it is the case of the reflectionless potential in
(4.11) for N=1 and |Uy = L2,
Let us suppose from SSQM

1
V=v"—p =— 5.8
YT (5.8)

Eq. (5.8) is a very simple Riccati eq., whose solution is given by substituting

= _ Yo (5.9)

%
and we have ’
.\\oxx _
=—, .1
w 2017 =)
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Here y; is the solution of the zero-energy Schrodinger eq. with H-

The solution y, from eq. (5.10) is:

W= C ch — (5.11)

V2L

and from (5.9)

tanh —2= (5.12)

1
V2L V2L

The superpartner to V_ has the form

V=—

V,=v"+p, = — — — sech? —_. (5.13)

Now, if we denote

1
=pl_p —
ny(x) = v* — v, s

1
n(x)=v’+ o, . . —~ — sech? —~_

212 I Lol
we can see that H, is the superpartner to H,,.

Using the receipt from SSQM shall now demonstrate how to construct a

symmetric reflectionless n,(x), i=1, 2, ... N.
For arbitrary i we may now assume that n;_1(x) is known and we define v,

by

I
=

2
Py =0 — v, — E

and then the supersymmetric partner has the form n, = v} + v, — E,

The crucial point, essential for the construction, is that the supersymmetric
reflectionless partner can be expressed via the eigenfunctions of the correspond-
ing Hamiltonian.

It can be see from the following (i = 1)

2
m+H\AJA-H~.~|+§+uk|uﬂmu+chnm~|lwal_=§v.a._£
dx dx
From this
d’ 2 am_ (E)
H'= ——+ E +n,-2—1In
ax? ] o dx? Yol £
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and
no=pny—2 IQWE w(E). (5.15)
dx? .
We can apply this procedure to the modified Z €gs.
It was shown by Sukumar in ref. [7] that the symmetric reflectionless

wz%@ may be expressed in terms of the normalized bound states eigenfunctions
in form

N
) = —4 Y [wAE)). (5.16)

i=1
Hrm.nm vmm. been also demonstrated that ny(x) can be constructed via the nor-
malized eigenfunctions wn(E).
Application of the formula (5.16) to the Z egs. for the quasi-static case exactly

fulfills the ooz&mom for the ion density perturbation to be a linear combination
of the squares of eigenvalue solutions of the eq.

QN
A'%Ljsgvieumis
with the weights 7, where E=—-yi=12 .. N

We can define the modified Z egs. for the quasi-static limit

m@N_\\ZlT .\\Zkkln\;l\\?."Ou AM~WV

Z
Tz +A .M_ Hx_szﬁm‘v_N_w uou (5.19)
where yy(E) are bound states by eq. (5.17) and ny are reflectionless potentials.

For N =2 there arises the interesting case when 73 =492 and ny(x) is
sysmmetric reflectionless well 7]

m(x) = — 3

- (5.20)

L2

The number 3 corresponds to N = 2 in the symmetric reflectionless potentials.

L*ch?

NN+ 1
2 x
L*ch?
Lo e
which are discussed in sect. 3.
As regards the physical application there is an interesting case when
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n)= —2WFD 1 NN+ (5.21)

¢ pres F_ 2
L2
Mathematically the formula (5.1 1) denotes the case of the Lame-Ains N-zones
elliptical potential [2].
Then the modified Z egs. 5.18), (5.19) have the form

. NN +1
10,0 + Ve + I{ Wil vy =0, (5.22)
NN +1
ng + !AN]v :s@ =0. (5.23)

In these egs. have the envelope solitary wave solutions

”NHMWOO:%H

k4

Yy

for arbitrary N =1, 2, ....
If we denote |y;[* = |§|?, where & has physically the meaning of a slowly

varying envelope of the high-frequency electric field, then (5.22), (5.23) represent
the Z eqgs. in the quasi-static limit, where the ion density perturbation is

NN+
2

In plasma physics experiments it could be interesting to verify whether the
discrete values of the ion density perturbation — |&|?, —3|€[%, —6|&|* are
relevant to the existence of the Langmuir solitons.

Another useful application is the study of the effect of higher order nonlinear-
ity on the propagation of nonlinear ion-acoustic waves in a collisionless plasma
consisting of negative ions via the methods in SSQM.

It is known [13] that the basic set of fluid egs. of a plasma consisting of
negative cold ions, positive cold ions positive cold ions and hot electrons
(non-isothermal and isothermal) reduces to the mKdV and the KdV eqgs.

The close connection between the N-soliton solutions of the KdV €q. enables
us makes it possible to obtain in this application N bound states exactly.

These states represent the multisoliton solutions and can be physicaly inter-
preted as ion-acoustic solitons in a multi-component plasma [14].

n(x) = 1€1?.

6. CONCLUSIONS

In the paper presented we applied after a short introduction to SSQM the
methods of SSQM in nonlinear equations.
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First we used the Grassmann variable for a toys extension of the NLS model]
to show the appearance of the reflectionless potentials and the connection with

solution of the KqV eq., which corresponds with SSQM.,

As interesting from the point of physics we presented here the application of
SSQM to the Zakharov eqs. with the envelope solitons and to the Kdv €q. and
the mKdv €q. with the ion-acoustic solitons.

A possible experimental verification is also discussed.

Here we not that the N- bound states , which are bounded in the potential
ny and yy is not the algorithm for the N-soliton solutions of the NLS eq.

Itis only a coincidence that in the particular case the |£|? in the NLS. €q. is
the same as the instantaneous 7 = () two-soliton solution of the KdV eq.

The agorithm which is used in SSQM for constructing the reflectionless
potential with N bound states is known to be related to the algorithm for the
N-soliton solution of the Kdv eq.

The author is indebted to Dr. M. Bednaft for usefy] discussions and
collaboration in one part of this paper.
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