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A NEW ITERATIVE APPROACH TO THE
RANDOM-FIELD ISING MODEL WITH
A GAUSSIAN RANDOM-FIELD DISTRIBUTION

SAMAJ, L." Bratislava

The aim of the present paper is to apply an iterative method to the RFIM. We are
concerned in RFIM correlation functions. The problem is reformulated by the use of
the replica trick for the calculation of some correlations in a pure spin system S’. A
special rewriting of the sum of &-functions gives a new graphical representation of the
thermodynamic quantities of the system S*. The lowering of the number of points on
an arbitrarily chosen reference spin in this graphical representation leads to an
iterative scheme. Quantities changing slowly and little during the iteration are found,
Simple assumptions about their plots imply what we call model I and model II.
Model I is based on the supposed independence of correlations in the surroundings
of the reference spin from its presence or absence. It gives a satisfactory account of
the critical behaviour above d = 4. More realistic forms of the correlations in model
II enable us to make the calculations of model I more precise.

L. INTRODUCTION

The Ising model in a quenched random magnetic field (for a review see [1])
has been studied by means of various methods. In spite of this the main
problems (the values of critical exponents, the determination of the lower
critical dimensionality (LCD) below which there is no phase transition, etc.)
have so far not been solved completely. Experimental materializations of the
random-field Ising model (RFIM), i.e. dilute Ising antiferromagnets in a uni-
form magnetic field {2, 3], confirm that the theoretical treatment of the RFIM
is not an academic problem.

The model was proposed originally by Imry and Ma [4] to examine the
possibility of a ferromagnetic ground state. The stability of an assumed ferro-
magnetic state at zero temperature against its fragmenting into domains was
investigated by simple energy arguments. The resulting LCD = 2 was shifted to
LCD =3 by the domain wall roughening calculations [5, 6]. The value of
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LCD = 2is in contradiction to the earlier renormalization-group analyses (7, 8,
9] in the d = 6-¢ dimensions yielding the critical exponents of the pure model in
the 4-¢ dimensions. mmE::mzmo:m_Vs the supersymmetric formulation [10]
predicts the dimensional reduction by two, and therefore LCD = 3. Recent
treatments of the controversial specifying of the LCD, namely rigorous theoreti-
cal analyses [I1, 12], nnso-.Sm:Nm:o:-maocn arguments [13, 14], high-
lemperature series expansions [15], etc. all suggest LCD = 2,

This paper is based on the iterative method [16] applied originally to the pure

correlation functions within the iterative method some introductory mathemati-

cal arrangements (following from the replica trick) are given in SEC. II. The
next procedure is evident:

II. FORMALISM FOR THE CALCULATION OF CORRELATION FUNCTIONS

We are concerned with the RFIM on a regular d-dimensional lattice. On each
siteu(u=1,2, ... N) there is a spin s, (the corresponding spin variable s, takes
+1 or —1) affected by a magnetic field #,. The Hamiltonian of this spin system
S is given by

m N N
H= =~ M\_ 8, J 05, — M_ h,s,. 2.1
Here, J is an arbitrary-range exchange coupling between spins on the sites u,
vand the prime means the summation with exclusion of the terms v = u. Further
we consider quenched random fields {4} characterized by site-independent
Gaussian distributions with a Zero mean

Pih} =T phy, (2.2a)

u=1|

plh) = _ exp AI

V2722

where A is the standard deviation.
In order to obtain the thermodynamic behaviour of the spin system S at the

5 »Nv (2.2b)
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dynamic quantities for a given
temperature T we must calculate the thermo or 2 giv
oonmcam:oa of random fields {,} and then to average over Ea distribution
Pih v <<m are interested especially in the RFIM correlation functions defined by
N
w 2. (s; = <s) (s, — {sp)exp (— H/KT)
8= .ﬁ d*h, P ()" v ; (2.3)

> exp(—H[kT)
{s}

where the sums run over all possible spin configurations. >m8.n a small modifica-
tion, the expression for g; (2.3) can be written in a more suitable form

8= _H|%| ._.8 %8 dh,...dhyp(h) ... p(hy) In B(A,{h}, ?.uv“— )

14 I4 ;.\\vﬂo
O (2.42)
where o
B, ) = T exp(3 3 s, +
+ W 1 h,s, + W ﬁ@v, (2.4b)
u=1 \ﬂN; o u=1
and A,, = J,/kT. . . . ick
The usual way to average the logarithm is the replica tric

. B lu b:vu A}:Wu A&.\\wv_w —1

In B(4,{h,}, {h2} = lim [B(4,{ . 2.5)

r—0 r

We introduce r replicas s" (17 = 1, ... r; 5" = + 1) to obtain .:wi. hy, (DY ._.,rn
integration over random-field variables {#,} in (2.4) then implies the following
nuv,m@m.mmo: for the correlation function

[ @ 1 X Vg on
g4, \cu_ma%'Mee X X slALs]+

r~0 p @\R@\&\ (sm 2 o=t g=
~ S SIASI+ Y S 3& (2.6)
" m :M_ s_\M,m_ sedset :M_ :Mu,._ o {hy) =0

with A = (/kT)*.

We defing a new spin system S’. On each lattice site u (u=1,2,... N) there
is r mwm.u,m :( (n=1, ... r; the corresponding mvE. variable Su = +1 or —1).
>~U:,mwd\ ,mmmsm u, and v, interact by an exchange integral (divided by kT

\Aue—\ = k:e%i\ e & \»AMSA_ - %a.\v ’ AN.NV
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i. e. spins u,and r,
two spins y
symbols:

localized on different sites v and v are bounded by 4

. rer « While
» 4. (11 # v) interact within the same site u by A. Let us

use the

Pu(A. A7) for the correlation fun
9. (4. Az 1) for the correlation func
q(A. A:r) for the correlation func

Finally. from (2.6) one obtains

.1
g:(4. A) = lim —~ Tﬁik, AN +r(r—1)g,(4, A; x@ X

o.:os of the spins u, and v, (u #v);
H._oz of the spins uand v, (u # v, n v);
tion of the spins u, and u, (n # v).

r=0 p

X %« ﬁ dh, :.&N.,%@_v.:ﬁgzv X

1 AY N 1 2
x M exp AM Y S Aus, + > — a.\wv”& =

wr=1 u=] \ﬁN..
= lim pi(4, A; r) — q,(4, A; r)]. 2.8)

r—0

IIl. AN ELEMENTARY GRAPHICAL REPRESENTATION OF THERMODYNAMIC
QUANTITIES OF THE SPIN SYSTEM S’

The correlation functions of the RFIM w
tions of a new spin system S’ in (2.8). That is
thermodynamic quantities of the system S’

1) the partition sum

ere expressed through the correla-
why we shall calculate the following

N r &
Z(4, A;r) = Y exp Aw D) S1A,.8!+

{sm Nz.en_ n=1i
~ N r
#5325 siax), 3.1
u=1 pv=1
i) the correlation function of the spins i, and Ja (i # )
P4, A;
pi(A, A;r) = Bl A D) (3.20)
Z(4, A; r) .
. - _ N r '
AN =B K= 3 st (1 505 s srs
& 2 it med v
— N r
+M M_ QM.\ &\Evu (3.2b)
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iii) the correlation function of the spins ipand j; (i # j, a # P)

g4, A1) = Q\N.A\Au A wv“ (3.3a)
Y Z(4, A1)

m N r
04, A; 1) = QF(4, A; ) =Y s8sP exp Am DRI B
{s7 wr=1 =1

N
+W. y ¥y :Sav, (3.3b)

u=1 npv=1l
iv) the correlation function of the spins 7, and ig(a# P

o0t As 1) = QA A D)

i (3.42)

Z(4, A;r)

~ N r
04, A =0F(4, A=Y stsfexp Am Y Y sl.s!+
{s7} we=1g=1
— N r
+=-3 ¥ ,:S&V. (3.4b)
2 u=1 nv=1

The summation over 2" spin configurations in (3.1)—(3.4) can be replaced
by the integration over the continuous spin variables, where the sums of the
corresponding J-functions occur. The iterative method {16} is based on a special
rewriting of the sum of the &functions

8(s]+ 1)+ 8(s7— 1) = lim Ju(sD, (3.5a)
2m + 1,,.my
fulsp =2 ,\m (1" exp[~m(s])]. (3.5b)
(2m)! i 4
We define the matrix A(m) by
AL(m) = —A™ + 2mé,, 5, . 3.6)
Its inverse matrix in the limit of m — oo is omSE& in the form
- 1 A
A7\ m) = — 6, + 1-6,) for u =, (3.72)
[ (m) 2m "t oy ( N
ot 5 for u # v. (3.7b)
(2my?

We apply the Wick theorem to the Gaussian integrals arising from the sub-
stitution of the sums of the &functions in continuous versions of (3.1)—@3.4)
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by the identity (3.5). The graphi i isti ,
.5). phical representation of the statistica]
€xample, is then found to be SR on

Z(4, A;r) = z_a_.am [Cm)]™. ). (see Fig. 1) (3.8a)
> @« all diagrams
NNS + _335_
C(m) = :
(m) G (3.8b)

mﬂd the Sum proceeds over all the diagrams constructed as follows:
.c each spin is represented by 2m points;
=W Mwo m_mmma Is created by connecting 2mrN points into mrN pairs by lines:
1) the line between the points belonging to the spin ,
factor L% o, g PIns u, and v, represents the
1v) .So.ﬂnozc._.ccaos of a given diagram is the product of all factors occurring
in it.
If we rewrite the sum of the &-functions by £, in (3.5) (n is arbitrary) for an

arbitrarily choosen spin, 1, for e i i i
>, 1 xample, the diagrammatic fo i
i N g rmalism remains

— the number of points on the spin 1, is 2n;
— the normalization factor is C(n) [Cm)™-1,
— the inverse matrix 4 ~!(m) is modified little when compared to (3.7)

An'emm=Ls 44
2n (2m) (2n)

\A 1v %_ .
(2m)(2n)

By adding one point to the spins (i, 7.), (i 7). (i i) (7 = : g
. i S 5,\nvu Qﬁ .\hvo Anﬁ i v Q ﬂm.\. a# in HF
mnm%r_om_ Tepresentation of Z(A4, A; r) we obtain Pie(4, wr ), Q%4 Wv r) m:M
Qi"(4, A; r), respectively. P
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A~ - %__\vv Awomv

(417" (m, n) = for v 1. (3.9b)

e

IV. THE TRANSITION FROM THE GRAPHICAL REPRESENTATION
TO THE ITERATIVE SCHEME FOR THE CALCULATION
OF THERMODYNAMIC QUANTITIES

In this section we present the procedure of lowering the point number on an
arbitrarily choosen reference spin, 1, for example, in our representation of the
thermodynamic quantities of the spin system S’. In order to differentiate the
reference spin 1, we use f,(s!) f,(s}) (n > 0, n < m) in (3.5) for the sum of the
o-functions 8(s; + 1) + (s} — 1).

Let us define the new quantities Z(k), P& (k), QF(k), O (k) with a # B,
i # j. They are obtained from Z(4, A; r), P4, A1), QP(4, A; 1), 0%(A, A
r), respectively, by taking away 2(n — k) points of the spin 1,. The normalization
factor C(n) [C(m)]¥ ' is necessarily unchanged. The relationships among these
function are found by the exclusion of the last point on spin 1, in the graphical
representation of Z(k),

Z(k) = lim CH[Cm)~-1. M (see Fig. 2) 4.1)
N.mn-—- o all diagrams
(n < m)
N, m N, 2m...N. 2m
2, i 2m 2, 2m..2, 2m
spin 1, = ét 2m..1, 2m points
n= n=2 ... n=r
Fig. 2

for example. When we link the point we want to exclude from spin 1, with an
arbitrary one of (2k — 1) points on spin 1, by the line [A!! ~!(m, n) = 1/2n, the
contribution of all remaining pairings is Z(k — 1). The connection of this point
with an arbitrary one of 2m points belonging to the spin j, # 1, by the line
[4117'(m, n) = A,/(2m)(2n) leads to the respective contribution Pl'(k — 1) (the
finite pair reduction of the point number on the spin j; does not change
P;(k — 1) for m — c0). The linking of this point with an arbitrary one of
2m(r — 1) points on the spins 1,,... 1, by the line [41]~'(m, n) = A/(2m)(2n)
implies the contribution @{}(k — 1) (because of [4!2 “(m, n) =[A5]""(m,

n) =...=[A}]"'(m, n) and 0}k — 1) = ... = Q% (k — 1)). Then
Z(k) = 2k — AN (m, m) Z(k — 1) + 2 2m[A1 (m, n) Pk — 1) +
+ 2m(r — ) [Aom, n) 32k — 1). (4.22)
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Analogous procedures performed in the i i p
A L graphical representations of p!! k
0u(k), O(k) (i # 1) result in "

Pij (k) = 2k [4}] T ) Pl — 1) 4 (2m + DI Om,m) Z (k) +

+ 2 2m[d}] ) PR + 2m(r — DU (m,m) @200,

i (4.2b)
Oiik) = 2k [A]" (m, m) Qiik — 1) + 2m[ 2! (m, n) Q(k) +
+IM_; 2m[ A1 (m, n) Ok) +
+ 2m AR (m,n) {(r — 2) O3 (k) + PR(k)} (4.2¢)
Qi (k) = 2k (4] (m, Otk — 1) + .W_ 2m A1 (m,n) Ok +
+ 2m AR (m, ) {(r — 2)0%h QMV + Z(k)} . (4.2d)

hmﬂ NA_Q\G\ = »_\x AL)s BE(AL) = Jkjn AD), QAR = \Jkjn A1),
@w. AQ_U = \«\x.\m 1) ca.ﬁrn Statistical quantities of the considered spin system
S’ with modified Interactions between the reference spin 1, and the others v

.k Tk
4y = /\‘W}__\ = ,\ME;%:+ Ad, (1~ 8,)]. (4.3)

Using £, (s}) m.o_. the sum of the S-functions of the reference spin 1, in the
thermodynamic quantities defined above with modified interactions one finds

Z(k) ~ MMMW A@»N A&r ‘= /\w \:uv, (4.42)
Bik) ~ M’M:W ﬁvkm\sAEs\ = ,\w \_mv, (4.4b)
07t~ S (&) o - Joaz). (440
00 ~ m% &) 07ty = xw ). (4.4d)

Finally, the RFIM correlation function of the spins 1, ;
calculated from PR Bl A ean b

&84, A) =lim[p, (4, A; ) — 9u(4, A; r)], 4.5)

r—0

184

where
P4, A; 1) = lim w% , (4.62)
Ay A: 1) ~ lim WN% “ (4.6b)
94, 451 = fim S50 460

Z(n), Pi} (n), 0;%(n), 0/X(n) as functions of Z (0) are solutions of the following
iterative scheme

Zky =K1 Zh—1)+L ﬁM APk — 1) +
2n 2n LiF
+ A~ 1) 01k — Lv k=12, ..n (4.72)
M__N_A\av = WW Ww__.._Qm - C + P -H\h:Nlan + M \M:.WN.U._Q& +
2n 2n J#ELi
+A(r — _E.N.__A&, k=0,1,..n (4.7b)
00w =2 oo+ L {4,000 + 5 4,000 +
2n 2n JELi

+ Al(r —2) QB(k) + M%Qazw. k=0,1,..n 4.7¢)

0w =2 st -1 + L 3 4,080 +
2n 2n {;

J#1

+ Al(r — 2) 0Bk) + N.E_W. k=0,1,..n. (4.7d)

Here Z(k), B (k), 0(k), OF(k) are related to the corresponding ther-
modynamic quantities with modified interactions between the reference spin 1,
and the others v, through the expressions (4.4a—d).

V. RESULTING EQUATIONS FOR THE RFIM CORRELATION FUNCTIONS
MODELS 1, II

All analyses of the RFIM correlation functions have so far been strictly
within the replica trick. The iterative scheme (4.5)—(4.7), which is equivalent to
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the basic formulae for thermodynamic quantities (3.1)—(3.4), simplifies essent;.
ally the problem. We have found quantities changing slowly and little during the
Iteration:

— the value of B'(k)/Z (k) (,j#1)for 0 <k <nis from the range {pl(1,),
P>, where p!(1)) is the correlation of spins the i, and j, provided that the
reference spin 1, is absent (the spin 1, is excluded from the Hamiltonian);

— the value of §,(k)/Z (k) (i # 1)for0 < k < nis from the range {(g;’(1,), q,,>,
where g;7(1,) is the correlation of the spins J, and 1, in the absence of the spin
L, The values of Q\(k)/Z(k), O’ (k) Z k), PP(k)|Z (k) and Q¥ (k)/Z (k) are
limited analogously.

The exclusion of one spin from the spin system in high dimensions does not
change the correlations in its surroundings essentially and so R\_C_v X Py
97(1) % gu, (1) ~ g, ¢3(1) ~ g, Pii(1) = py, g11(1,) ~ g. That is why it io
reasonable to use, during the iteration, the relations

Bj (k) = py Z(k), 0i2k) = g, Z k), 0i’(k) = ¢, Z(k),

Q_.N_uQav = {5 N..Q&‘ Nl»mwQav HE:NIQGV Q:_N—uQav == QN:Q&

for arbitrary k = 0,1,..n Using these assumptions the iterative scheme 4.7)
results in equations for the RFIM correlation functions of model I

8i(4, A) = mm.a.w?_%ku A;r)— (4, A; nl, (5.1a)
pu=A,+ M \mc.@... +A(r - 1) g, (5.1b)
JEli

41 = Q\m: & M~ \m_\.m.\... * \.:x —2)q;+ \lru_: (5.1¢)

JELi
q9= M_ \m.c.ac.+ A(r—2)q + A, (5.1d)

j
where the notation
i, = Szraks, F Scraxf (.1¢)
a a

(tanh o)’ = ) Aypy+ A(r — g (5.19)

j#1

is used for the renormalized parameters,
In order to understand the influence of the random fields on the ther-
modynamic properties of the spin system within the proposed approximation

we consider the pure case (A=0) first. As 95=¢9g=0and g, = Py we write
immediately

186

gi= A+ Aygi, (5.2a)

JEL

*

(tanh QVN = M,. \mc.%:.. (5.2b)

F#1

The Fourier transformation of the correlation function

.MQO - M_ \mc..w_\.
jZ
k) = = , (5.3a)
Gk 1 — A(k)
AR = Y A, exp(ik. r,) (5.3b)
I
diverges at k = O at the critical point 4,(0) = 1. As
ol
to1 =4 S —M |, (5.4)
(tanh ) Qﬁ v, L1 — A(k)

I. = 0 (a. — o) for d < 2 because of the divergency of Green'’s lattice ?aomoz.
mnon d > 2 model I is substantially more exact than a Bsh.woa-nrmmo approxima-
tion, for example. The estimation of the critical points is .mmcmmmoﬂoa\ as well.

In spite of the incorrectness of LCD = 2 for the pure ~m5m mvﬁaam,. model 1
can explain the influence of the random fields on the Ising spins. Provided that
A # 0, we have from (5.1), in the limit r — 0,

(1—qAk)— Y A,

jF

k) = - (5.5a)

Gk 1+ A— Ak
g=-2L (5.5b)

AL + 1,

1
(tanh @)* = ¢ + (1 ISA_ Iﬂv, (5.5¢)

1

with I, defined by
Nn% s -_ - fora=1,2 .. (5.5d)
T ez W 1+ A - Ak

The divergency of I, at the critical point 4.(0) = 1 + A ford < 4implies g, =1
for arbitrary A # 0. The resulting critical point a, —» oo (T, = 0) is not a physical
one as (g;). =0 for arbitrary i # j. Therefore, the ground state cannot be
ferromagnetic for d < 4 in this approximation.
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Model r.zmm_nonsm the change of correlations in the surroundings of the
Rmonomno spin 1, caused by its absence, satisfactorily accounts for the critical
@o@mSoE, above d = 4. As the approximation fails for d < 4 (there is no critical
point), we shall consider more realistic plots of MEQM O#k), QHk). B
analogy with [16), we write ST e

= k k -
Py =2 1 {1 _5)
) (k) ﬁ: Dy + A~ :vﬁ.\ A—_VM Zk), a‘mmv
Ok = W gy + A - @ %i Z(), (5.6b)
n n
iy k K o7
Oy F g+ A - mv s.._m:_; Z(). (5.60)
Here the boundary conditions
Peeck)
N:Q& =p; fork—n,

= p;(1y) for k-0, etc.

are ?5:&. Putting (5.6a—c) into the iterative scheme (4.5)—(4.7), we arrive at
the equations for the correlation functions of model II

W:Alw \—v = wnr—ww ?:@Au \». x.v - Q:A\Au \—u \Zu AM‘NNV
D= \.m.: + M_ .\m.:..u: + NO. - lgq, -
J#ELi
~L@p| ¥ A+ Ac- sz | (5.7b)
J vl

q: = Q\m: +\qu“ \N:Q}. + \.:w - NVQ: + Nﬁ: — L(a, p) x
x T_.. i + M_ A,897 + A(r — 2) g% +\§&, (5.7¢)
JEL

q9= M\N:S\.TNQINVQ.T\MI

il

— L(a, sﬁM A;oql + A(r = 2) @&, (5.7d)

Sf # 1

188

where
2 tanh mv a
L =—|l-—")—_ )
(@8 B A f /tanha (3.7¢)
B=2 A5+ ¥ Audp) (1) + 240 - 1) Y 4,
j#1 ij#1 j# L
x gy(1) + AXr — D[ — 2)gB(1) + 11, (5.79)

and dp;i* = p; — pj*(1)), 8q;° = q; — ¢%(1)), 8q% = q — q2*(1,).

VI. DISCUSSION AND CONCLUDING REMARKS

The set of equations (5.7a—f) contains two types of the correlation functions
— with and without the reference spin 1,. In order to solve it the following
procedure is proposed. First, we choose suitable equations, namely the resulting
equations of model I written in a symmetric form

i ~ 1 aa 1 aa h q aj
pit=A;+- 3 Aupig + AP + = Y g7+ S...mv 3 (6.1a)
2 k#FLG 2 fFa
.h ~ 1 a a — i q 1
Q..\m = ..\.A?u + S\v += M A\;Sqm + \A\»Sm.av +
2 2 k#ij
A A
+= Y @+ g+ = e+ pl, (6.1b)
2 y#ap 2
af 1 4 ab 4 4B A ay Br A
q4i == M A\_..\.S,‘ + \#..S._. )+ — M @"+gnN+A (6.1¢)
2iFi 2 y#a8

by use of which the correlations with the excluded reference spin 1, are
generated. The exclusion of spin 1, from (6.1a—c) yields the following equations
for small differences 8p;°, 8¢, 592

i s

N%ﬁ.w,_ = \M:h:. + \w\._ﬁ: + M Tm._.»%ﬁ‘_c_ + N\»%ﬁkv +

k# 1)
+ A(r — 1)(8g;” + 597), | 6.2a)
28gy = Ayq + Apy + M \H.\ \.__N + M \m:. \.w_ +
j#E L J#E LI
+ Ay 69 + AdpT + A(r — 2) (84,7 + 8q7), (6.2b)

2 \WNN\N_._Q:.T M \w.,\. \.“.N.T M \m...\.%&.w_.f

J#ELE J# L
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+ Aa 8l + A(r — 2)( W+ 6q2), (6.2¢)
26q* = A, q,, + IM_...,\.E; i + Ay oq3)) +

+ 4,897 + 4,640 + 4, 593 + A(dp) + ) +

+ A(r - 2) (892 + 7 (6.2d)
28¢% = Aq, +\.1MLN< Fa f.m..&%% + 4,697 +

+ gl + 24802 4 2A(r - 2) 847 + Adyq,, (6.2¢)
207 = Ay, +1M:Q:m$w +4;6p7) +

+2A(r~2)8g3 + A 2 (6.29)
28q7) = 2Aq + N\WUM Ay8q7 + 2A(r - 3) oq77 . (6.2g)

.,:8 System of equations (6.2a—g) has to be solved iteratively. The leading terms
In the lowest power of the parameters 4,, A

W R Apyt ), () (6.32)
8q;f = w (Aag + Ap)), i#1 (6.3b)
i & W gy, i1 (6.3c)
e & W Ay qy, (i#j)#1 (6.3d)
7= W Agy;, i# 1 (6.3¢)
5P~ w Aq,., i1 (6.30)
57 ~ Aq, (6.3g)

after substituting into the right-hand sides of (6.2a—g) yield the expressions for
op;°, 8q5%, 5q2° in the second power of 4,, A and so on.
In the case of the vanishing random fields (A = 0) the set (5.7a—f1) in the
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lowest approximation (6.3a) implies the right LCD = 1. Having the right value
of the LCD for the pure Ising models we expected model II for A # 0 to be
applicable in the interesting region d < 4. However, the expansion of op;c, 8q5°,
5 up to arbitrary finite powers of the renormalized parameteres A;, A does
not change the conclusions of model I, i.e. the equations (5.7a—f) do not give
a critical point below d = 4 because of the I, divergency. This anomaly occurs
in the RFIM with a bimodal random-field distribution [17] as well. The failure
of the iterative method below d = 4 may be explained as follows:
i) the problem was investigated within the replica trick introduced in Sec. II.
The questionable limit r — 0 (corresponding to the zero spins on an arbitrary
site) is used in the final calculation of the correlation functions. Therefore, the
treatment of the replica-spin system S’ as a uniform one would be incorrect;
ii) the consideration of all powers of 4;, A in (5.7a—f) can help elucidate the
region d < 4. In a nonperturbative approach the quantities Py 9, q interchange
the pair of the parameters Ay, A which are irrelevant from the point of view of
the transition points. We suggest that for d < 2 the divergency of I, implies
(g;). =0 at T, = 0, while the supposed absence of I, in the resulting equations
for the correlation functions admits the existence of a critical point for d > 2.
If the d > 4 model 11 gives a satisfactory account of the critical behaviour and
determines the transitions points more exactly when compared to model 1.
For future investigations a nonperturbative approach to the set of equations

(5.7a—f) is necessary,
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HOBbIN UTEPALIMOHHbIIL nmoaxox k MOJAEIM M3UHTA
B CIIy4YAllHOM HOJE Ccr AYCCOBCKHM PACITPEAENEHUEM
‘ CIOYYAWHBIX NOAEN

Hens aannoir paboThl cocrour B TNIPHMEHEHHH OHHOrO HTEpAUHOHHOrO MeToma K Mozenu
Hsunra s cnyuaiinom TI0n€, 1A XOTOPO# by PaccMOTpeHs! xoppensuMonHLe GyrKmy. Mpo6-
JieMa niepedopmynuposana Npu noMou Moaensroro NIpHEMa U1 BBIMHCIICHHM S HEKOTOPBIX kop-
pPenauMit B yncroit CINHHOBOIL cHcTeme S, Criennanenas 3amucy, CYMMBI S-byHkimii gaer HOBOE
rpa¢myecxoe TIpeACTaBleHne TEPMOMHAMHYECKHX Benpuuy B cucreme S'. IMonmxenne umcna
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