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ON THE TORSION OF INHOMOGENEOUS
ELASTICALLY ANISOTROPIC (ORTHOTROPIC)
BARS

tMAMRILLA, J.,» SARKISYAN, V. 8.2 MAMRILLOVA, A%, Bratisiava

In the paper we solve the problem of torsion of the inhomogeneous elastically
anisotropic (orthotropic) prismatic bar with a rectangular cross-section and with a
fixed stress on the boundary. It is assumed that the material of the bar is weakly
inhomogeneous. The problem is solved by the method of the small parameter and is
reduced to the recurrent set of boundary problems of the homogeneous theory. For
a given inhomogeneity (2.1), (3.1) we solve in (3.2) the problem (i.e. (the solution of)
the boundary problems (2.3), (1.12)) — the Prandtl function of tension ¥

L. INTRODUCTION

In the past few years the theory of elasticity of inhomogeneous and anisot-
ropic bodies had been rapidly developing. This theory is the generalization of
the elasticity theory of the homogeneous isotropic bodies. The theory was
developed by many authors. For example, V. A. Lomakin contributed in
[3] to the theory of elasticity of the inhomogeneous body and S. G. Lech-
nickij [2] to the theory of the anisotropic body. Lomakin formulated the
constitutive equations and showed the method of their solution. He also showed
that problems in the theory of the linear viscoelasticity, or the problems of small
elastic-plastic deformations can be reduced, e.g., to the problems of elasticity of
the inhomogeneous body. Similarly, the problems of thermoelasticity, in the
case when the parameters of elasticity are weakly temperature dependent, can
be reduced to the problems of the classical thermoelasticity.

In this connectian we want to mention reference [6} where the problems of
weakly inhomogeneous bodies are formulated, both for the statics and the
dynamics of the classical inhomogeneous and anisotropic bodies. In ref. [6] are
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also studied the mathematical aspects concerning the existence and uniqueness
of the solutions and the convergence of small parameter expansions to the
i ¢ problems. .

mo_w\m%_“ww MMMWE@NR devoted to the ms./\nmmmm_mo: of ?.oEQ.:m of Snm_oﬂ of
anisotropic both homogenenous and inhomogenenous bodies among Hﬁ.oa
especially {1, 3] are significant. Lists of Rﬁnnsomm devoted to Sn. E<om:.mm :ms
of the stress and deformation states of the m:ro:_omm:oso:m bodies are in R— w
[4, 5]. Some interesting results can be find in refs. [7—9, 11, _N_.. In paper [11]
there is solved the problem of torsion of the Eroﬂomgoocm m.Emo:o_u._o (non-
orthotropic) prismatic bars in the case when the inhomogeneity functions are
i ions in two variables. . .

_Emwﬂmﬂmﬁﬂomgn paper we follow the ideas vnnmmia@ in{1 :.. We investigate WMR
the pure torsion of the inhomogenenous m:.a anisotropic A.o:ro:o?ov ar
under the assumption of a weak inhomogeneity of the material of the bar.

N X

Fig. 1 Figsia

H. FORMULATION OF THE PROBLEM AND BASIC EQUATIONS

Let us investigate the pure torsion of a prismatic bar of a :woﬁmcwc_wa
cross-section with sides a, b (Fig. 1). We assume a.ﬁ bar to be made % HM M
inhomogenenous anisotropic material and the anisotropy to c.n sucl a
through any point of the body there pass three planes of elastic symmetry
orthogonal to each other, perpendicular to the coordinate axes x,, x,, x;. Such
body is called othotropic.

The body is investigated in an orthogonal frame ammsna.g the axes x,, x|,
x;. The origin of the system is located at one of the end points m;. the bar and
the axis x; is identical with the geometrical axis of H.:n bar considered. :

Let the elastic osmnmoﬁammﬁ a; be &mamnoncﬂc_n in the plane transversal to
the bar and constant along it, i.e. a; = a;(x;, x,).

One usually assumes that the body is loaded only on the end surfaces, and
the forces acting at the ends are statically onc?m_m:.ﬁ to the EoBosz.:ﬁ of
torsion M,. M, is parallel with the axis of the bar (Fig. 2), the lateral side of
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which i ; .
ich is free of the acting forces. In this case the state of stress in the bar jg

d .
etermined by the two components oy, and o,, on the stress tensor; th

equal to zero e othrs are

On=0yu=03=0,=0 (1.1)
In this case the followi |
ing com i
oo g ponents of the deformation tensor are equal to
fn=&p=g&=¢,=0, (1.2)
where both &3 and ¢, are non vanshing,

T .
he stress tensor components satisfy the equations of the equilibrium. If we

99 _
N o, (1.3)
(i, j =1, 2, 3) or explicitly
Wob” , ﬁ” ﬁ.?@o.mlo
@.X.m @.&u ’ @k— @RN B ’ AM.L.V
The equations are identically satisfied by putting
oy oy
O, =——, = 27
12 ™ O3 o, (1.5)

EWM”@.*\MN: X,) is the Prandtl function of stress, depending on X, and x, only
also assumes that deformation of the body i l

, ume y 18 governed b
Hook’s law, which in the case considered can be written in the mondw genera!

&3 = ay(x,, x,) Oy3
&3 = as5(xy, x,) Oy3. 19
The components of the def; i i
. ormation tensor satisfy the equati inui
of deformations (Saint-Vernant’s law) [6] ’ Apstonsotsontmlty
¢,
0Ox,,0x,

?ga@a_m:aras-stma@aaoao§8pE.;éZu_N 3), which
1N our case can be written in the form Y e WG

Eim€;

Jrs

=0 (1.7)

0¢, 05,
ox, ox 20 (1.8)

where 9 is the torsion.
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By substituting the relative shears from (1.6) into (1.8) and with respect to
(1.5) we get the following differential equation for the determination stress
function

G4 Y day(x, x,) 0¥
Au(Xy, X)) ——+ ass(x), X)) — + ————= . — 4
4441 Nv @Rw muA 1 ~v @«KW @.H_ @uﬂ_
3+ 200 ) 3 _ g, (1.9)
ox, 0x,

The torsion & (i.e. the angle of torsion per unit of the length of the bar) is given
by the relation [2, 7]

(1.10)

=~
I
SRS

where -
Q~ = Nr‘-Aq. ‘\A.x_u HNV&X— Q.XN A—.—_v
D

is stiffness in the torsion.
Assuming that on the lateral end surface of the bar external forces do not act

(I is the boundary of the simply connected region D of the cross section of the
bar), then

¥Y.=0. (1.12)

Thus, the problem of torsion of the inhomogeneous anisotropic (orthotropic)
prismatic bar leads to the solution of the differential equation (1.9) with the

boundary condition (1.12).

1. TORSION OF ORTHOTROPIC BARS WITH WEAK INHOMOGENEITY

In what follows we shall investigate orthotropic bodies with weak inhomoge-
neity [6, 7, 11]. Their elastic characteristics can be written in the form

Ay Xy, Xp) = QPE + &1 (x1, x))]

o @.1
ass(xy, Xp) = ass[1 + 8 (xy, x))]
where a are constants satisfying the inequalities
ay >0, a%>0, 2.2)-

Ji(x;, x;) (i = 1, 2) are known differentiable functions and & is the small para-
meter (referred to in literature as the small physical parameter), characterizing
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. . .

A[¥]+ SH,[¥) = —29 @.3)
where the operators Ao ], Hy[ ] have the form .

02 o
A[]1=ay 2 | g0 O

0 t@kw + am@.«w (2.9

0? 2
Ho[]= am»\_ﬂ + aww\No,N + mmﬁ@b.h + al % 3
X5 Ox} Ox, ox, umHN dx, 2.5)

We look for the solution of
. the boundary probl ] i
a power expansion in the smal] physical W%BEMM“ A%.wvv e et of

(2.6) into equation (2.3) we i
to . obtain a system of
determining the unknown functions ¥ (x5 x5) cunwl.o Mﬂwuw co_wzamQ problems

Ac;ﬂ ==& 2.7
ﬁmr, =0

Ao[H]) = — 0,01, x; B_)) 238)
.mmﬁ =0.

Sitax+cy (i=1,2). (3.1)
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To simplify the notation we use x, y instead of x,, x,. We use the method of the
small physical parameter to find the solution ¥(x, y) of the boundary problem

(2.3), (1.12).

Using some results given in paper [11] one can easily show that the solution

of the boundary problem (2.3), (1.12) taking only two terms in the infinite series

has the form
b
4oalg = -1 nﬁ;[.ul
P(x, y) = — 227 Y ok 1- sinZx+
3 k=13 Akr a
Sy

%tma - m_::.mk = _v

802’8 & & b
8| —— b
T i ,NHMN,:"M_L U sh Alx wt
2
wrlyr )
ch—or 7
N 2 ©
+ ¢ sin/Zx + |m©om~ g aww_u.+
orm a n 1=1.342%
5
y ms\:malmisﬁlv N mi\w@
il .
+dthZE. 5 o i 2w
s sh Aln "2 shaln
6
ur( 1)
mr»\wﬂ% §~A\A~+Mw_wv %FM ch :
+ — — : + . : +
d sh A/ 42%P 42 AMr
ch—=
2
zy
T 1 v . b 1 B
+glZy——)+n|\ T2 | -
& @w 2" T\ T T s
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»QANK - v
b

sh
2 . \N‘
T sint=x [+ 3.2)
o:E -
2
where
= — 44, 204, - 4)k* + 24,07 2@+ A) kU — 24,8
Q- — \ﬁwvu N\ANQN - \mNVN \GNQN — \ﬂuVu ’
By = 24, — Ak + 24,07
\\WNQN _ \mmvm ’
op = 2CX 4 + A) K — 24,0 4(4, + B)1 .
(=3 TR T LA
\ﬂNQN _ \ﬂwvu QN _ \ﬂNVu ?
4=TA4,—4) z(2B, 4 p) 4 278, )
16228 164° 1624
(= EA A= 4) T~ @B, + B)
8L 8% '
- B, _ B, 0 (A%, — Ay) o 7(A’B, + B)
2% 4p ¥ gk e
The constants 4,, 4,5, 4, B, B, B, are given by the expressions (11 (3.18)]
@w 2
A4 = IE. 43 = lmNm. Ay = ln_lbl_v
ar T ar
0 3 0
B =~ ,\hlwm.m.%. By = l,\@.@&,
Ay ar Qw& n
B, = — afww.&&,
au r;

and the constants by, A are given by the expressions [11 (3.10)

b = 44 \wl.@_lb Qma
! 0° Y
as;s a a\Vaj

,_..:3\ are expressed in terms of the elastic properties and the transversal dimen-
8101 a, b of the bar.
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The correctness of the solution of the boundary problem (2.3), (1.12), in the
space L, follows from known theorems [6].

V. CONCLUSION

From the known Prandt! stress function ¥(x, ¥) (3.2) the tangential com-
ponents of stress can be determined by means of the expressions (1.5). Using the
derived relations wa can investigate the behaviour of the maximal tangential
stresses, which depends also on the elastic constants of the material. The stiffness
in torsion C, can be determined by the known formula (1.11) and the torsion
angle $is given by ( 1.10). In this way there would not only the problem of the
theory of elasticity be solved but also that of practical — application of finding
shape of the body with the best mechanical properties by the torsion deforma-
tion, i.e. to find the shape of its cross-section when the elastic properties of
material are given, in order to gain the maximal stiffness intorsion and minimal
tangential stress.
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K BOITPOCY O KPYYEHMH HEOJAHOPOAHBIX YIPYT OAHM3OTPOITHBIX
(OPT OTPOIIHbIX) CTEPXHEI
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