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PATH INTEGRALS FOR A NONRELATIVISTIC SPIN 1/2
PARTICLE MOVING IN AN mhmnHzOZ\»OZm,:O
FIELD IN A GENERAL CONFIGURATION SPACE

MELEK, M., Giza

The :o-m_,n_mcs.m:o Pauli equation for 4 spin 1/2 particle moving in an electromag-

netic field in a general configuration space is found by using the path integrals

Petras.

curved configuration space with an extra term #?R/12, where R is the scalar
curvature of the configuration space. Next Cheng [2] obtained the same

proportionality is 4%/12.

In the present work we shall pursue the work of De Wit Cheng and
.wn:->cnmrm5 and Lonke in the case of a nonrelativistic m@m: 1/2 movin
in an Qoo.QoBmmmm:o field in a three-dimensional curved configuration mnmomm
As a special case of this work in a flat space we shall obtain the path ::nmnm_m.
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It is well known that to construct the path integrals for the quantum motion
of a nonrelativistic spin 1/2 particle one needs to give a consistent description
of the classical spin degrees of freedom taking into account the quantum nature
of the spin. A solution of this problem was originally suggested by Martin
[5], who showed that the anticommuting (Grassmann) variables can be used for
a consistent description of the classical spin degrees of fredom for a particle.

The introducing of the anticommuting variables into classical physics for the
purpose of describing the classical spin angular momentum was due to the
postulate of the canonical quantization procedure and according to Pauli,
who noticed that the quantum spin angular momentum operators S, admit a
complex half-integer representation in which the quantum operators S, (in the
case of spin 1/2) satisfy the following anticommutation relations

it was suggested ta associate with the particle three real anticommuting variables
O(1), on the classical level, which satisfy the following anticommutation rela-
tions

00 +606,=0, O} =0 (1.2)

in addition to the position coordinates x(1) of the particle, where i, Jj=123.
This gave rise to the so-called “pseudoclassical” mechanics which has been
studied by Casalbouni [6], [7] and Berezin and Marinov [8].

Recently Petras [9] succeeded in formulating a consistant description for
the classical spin degrees of freedom in terms of six canonically conjugated
ordinary AooEwscasmv variables &, 7, by studying the dynamics of the so called
“point top” moving in an electromagnetic field.

The present work can be considered as a prototype of the work which has
been done by Balek, Petras and Melek in [10] and [11]. In section 2 the
classical action of the nonrelativistic point top in a three-dimensional curved
configuration space will be carried out. In section 3 the classical orbital and spin
equations of motion for a point top will be found. In section 4 the equivalence
of the nonrelativistic point top model and the Berezin and Marinov model for
spinning particles will demonstrate that both models lead to the same classical
equations of mation. In section 5 the equation for the propagator of the
nonrelativistic spin 1/2 particle is derived by using the path integrals procedure.

2. THE ACTION OF THE POINT TOP IN A CURVED CONFIGURATION SPACE

According to Petras [9), the spin part of the action of the nonrelativistic
point top in a flat space, can be written as follows
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5[ [nés £an] e
A n ¢ osib; dt &m)i-,, .1)

{&, Ny = %..\. and {&, m\w ={n, Q\w =0 (2.2)
where i, j = 1,2 i i i

Fhere q.\ , 3, s;is the Spin vector constructed as a function of the variableg
Si = &u&in + @&, 1, (2.3)
ﬁ”mﬂ:@&ss, €, = —¢&sin@cos g, S =¢cos@ (2.49)
S=(i+ & pyn_ v 2.5)

; dé&

%N, = ’m.

dr

a=—S_ (¢ ¢ 0

graled | (2.6)

and @, O, ¥ are Euler angles.

Now, we would like to study in a three-dimensional curved configurati
Space the most general nonrelativistic classica] dynamics of the point Sm r_.om
can .co ao:«na from the classica] nonrelativistic Petrss dynamics for mmu in Mow
particle. This means that we have to write the action (2.1)in a three-dj i /
general curved configuration space. mensional

The moa.oz (2.1) contains the terms &7, &y & m and 7; m » and since £ and
are 5n.<w:mEnm that describe the spin degrees \Om ?onaohs :m:a due to H..:o mmcﬂ..
Sm.ﬂ Spinors in curved Spaces can be defined only with Sm.naoa to the imnvm_.o:
three Samvo:ao:ﬂ and orthonormal vectors (dreibein) .» SEM?SMH Mwwnw oh .
wmo: point of the configuration Space, where j — 1,23 =~Wm the local Enmmm i
Index and v = 1, 2, 3 is the coordinate index. The two terms &7, and gx&;my MMN

i ik Sj

£

be easily written cs.g respect to the dreibein vectors. To write the term :m in
a curved configuration Space, we have to find the time derivative of the <mmmm~zw

1 . m W Vv

D¢, = dé — 6¢; (2.7)
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where

dé&.

dé = dé dr

dr
is the difference between the components of £, at the two points x* 4+ dx* and
x*, which are located on the world line of the particle, 8¢, is the variation of the
components of & due to its parallel displacement between the two points x* and
x* 4+ dx* and

dé;
D¢ =2 dy
2 dt

is the difference between the components of £ at the point x* + dx* and the

components of the parallel displaced & at the same point x* + dx*. Hence
instead of the term 7,£, in the action (2.1) one has to insert the term n, %.
t

which is the same term 7, m.. but is written in a curved space.

Now, we need to calculate 8¢, which can be considered as the change in ¢
due to an infinitesimal loeal rotation of the triad vectors. The standard way to
calculate 8¢; is to calculate the following Poisson brackets

8¢ = {F, &} (2.8)
where
F= —5,6¢,

is the generating function of the infinitesimal rotation of the coordinate system
with an angle ¢, The angle 6¢; can be expressed as follows
1

op; = 5 S (2.9)

where ¢ is the fully antisymetric unit tensor and @; is the matrix of the
infinitesimal rotation. Using the Poisson brackets (2.2) one can prove that

6= — @.»A&.@v & — A%SL @m. (2.10)

To express the matrix @; as a function of dx*, let us choose two very close points
A, x*, and B, x* + dx* in the curved configuration space, and define

Q(?v> B = \f.w

the dreiben vectors that are in parallel displaced from the point A to the point
B, (4,). and (%:,)s are the dreibein vectors at the points A and B, respectively.
One can express (4,), as

149




(Ade = Ay(A)a s, 2.11)
where Ay is the rotation matrix can be expressed as follows
Ay =8+ w. 2.12)
By inserting the expression of A; from (2.12) into (2.1 1) one would get
A (x* + dx#) — A(x* 4 dx#) = @y A7 (x* 4 dx¥)
Dy, =2, ,dx* = o 1.

(TR
Dy = A, A dx*
§ = — QHE
where ‘ b 1)
Yiew = — iy AX (2.14)

are the Ricci coefficients of rotation. Hence from (2.9) and (2.13) one gets

1

&.ﬁ.. = — M ik Yk dx*# AN._MV
therefore (2.10) becomes
1
%ﬁE = ﬁm .m.\.\ixit&%m - QEM\M“ Q\dt. AN m@v
Hence from (2.16) and (2.7) one could obtain
D¢ _ d¢ 1
ﬂ”H.T_VwN.\.r@IM.@NSRS\u@%;c:V ) AN._d
where
v¥ = ﬁ
dz

Hence, .Go mni part of the action of the nonrelativistic point top moving in a
magnetic field in a three-dimensional curved configuration space is given by

In
: e 1
,wnh Th.;%l@.ll \sxéi@w de =)oy, (218)

) mc 2

The orbital part of the action Is given by

2 5 —\ &
,won % wm. wicé.r ; A v" — mew de, (2.19)
o

where g, mm.ﬂrn metric tensor of the three-dimensional curved configuration
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Space, m 1s the mass of the point top, 4* is the vector potential of the electric
field, g is the scalar potential, e is the charge of the point top and ¢ is the velocity

of light.
Therefore, the total action of a point top moving in an electromagnetic field

in a three-dimensional curved configuration space is given by

Y
§= MQ.TUMH.‘, {n& — Ry} QNIA%QLFE (2.20)
fa
where R; is the total Routh function of the point top given by
R;= — i g,0"0" — ¢ £, A0 + e —
2 c
e 1
- ﬁll B —~-g, 3.%@; 8- 2.21)
mc 2

Here, the Routh function plays the role of the Lagrangian for the orbital
variables and the role of the Hamiltonian for the spin variables of the point top.
In the appendix we shall prove that the action (2.20) is invariant with respect to
a general local rotation of the dreibein vectors.

3. CLASSICAL EQUATIONS OF MOTION

From the spin part of the action (2.18), the interacting Hamiltonian of the
spin of the point top with an external magnetic field in a curved configuration
space is given by

1

m
gi”ﬁlllw\.*.l \.\sxstem_ . Aw.:
mc 2

Hence, the time development equation for the spin vector s, is given by
—! = t@:u .w..v ’ AwNv
where

OH,, 0s, OH,, Os,

0% om,

is the standard definition of the Poisson bracket. By inserting the expression of
H,, from (3.1) into (3.2) and using the fact that

{5 .&w = T &S (3.3)
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one should get

Q.&. ll ~ h N
M*” - m.in M .mw.\i wx\itc l\l&'ﬁ. m\\/\ Sy . AMAV

By using the least action principle f; i
. : ple tor the action (2.20 2 i
following orbital €quation of motion (2:20) one would optain the

4 (o) ok, _
3 \ove oxe 0 3.5
which will lead to the following equations

e

o ( dx*dx e e dx*
+ T =—Fe 4 % 0 X, e
Wl a4 ar T o T ar T e Denk 5+
1 dx#
+Nﬂ m.-\k%..k\\ﬁﬁaimu Aw.@v

where

el 1
W\k—ﬁw = MW@QAWEN_\nT W,\Q.t - Wtso.v
£, is the electric field Intensity vector, B, = A¢B,
B, = A\ﬁﬁwtv..m = Nmawn + \Q%km

M..t = ¥ t v
0 Lo + ﬁ—\QM M;.

wknﬂwﬁnl w _\Mmc

HO
NN\E:, = sfn AZR =

ooy = Lkvip = Viw v + 35\3\..: = YViku Yijv-

(3.6) will be , the equationg
QN.NQ B v
a7 +mbwm .Qh”lml ;h.h»makt Au.wv
t VD dr dr gy, S dr

w.ﬂ.nN_.z .m:a Marinov [8] studied the classical nonrelativistic spin dy-
:m::cm. by using three rea] Grassmann dynamica] variabes ©(1). They defined
the Poisson brackets for any pair of functions of O(1) as follows
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e d

{(0), g(0)} =i(13,)(3,2) (4.1)

where the left-hand and right-hand partial derivative (8, and (3,) are defined
as a derivative with respect to @, f a monomial as follows

o

6O .0 6,0, ... —
( A \‘.v 00, 1k O p‘.L
~ 8, _4x6,0,... G, ,0,+. ..+ (=1Y'6,.0,... o, . “.2)
:W» (6,..0)=6,0,...0 —
30, - Y hk S - Yy
~ 00,0, ... O + ..+ (=1 6,0,0,... o, . (4.3)
Thus the variables O, are fulfilling the following Poisson brackets
{6, Ot = 16 . (4.4)

The spin part of the classical action of a nonrelativistic spinning particle in
an external magnetic field B, in a flat space is given by

»u % T @M@Jrhi@ && &+ 000,0),  @s)
w L2 dt  mc 2

where

1
5(0) = — M &m0, 0, 4.6)

is the spin vector which generates the group SO(3) in the Grassmann phase
space, k, [, m =1, 2, 3, and one can prove that

{51, u\v = = &ys- 4.7)
i

Oty @i

(boundary term) in the action (4.5) is due to the fact that the equation of motion
for the variable O(2) is a first order differential equation, as it will be shown
later, and therefore one cannot fix @, at the initial and final points. Be-
rezin and Marinov did not take into account this term in their work [8].
The classical equations of motion of the variable @, can be found by varying the
action (4.5) with respect to @, and applying the least action principle with the
following boundary condition

6O (ty) + 60,(1)) = 0, (4.8)
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Here, we have to point out that the presence of the term ﬁ




which will give
do, e
i . &80, 4.9)
dt mec
Applying the same procedure as in Sect. 2, the spin part of the action of the
nonrelativistic spinning particle moving in an external magnetic field in g
three-dimensional curved configuration space is given by

N2. ~ .
\ru R, WW ®»®»+ ﬁh B —— :sxéi @M dr+ = O, (1x) O(ty) . (4.10)
6w 2 mc 2 2

Therefore, one can conclude the equivalence of the point top model and the
Grassmann variableg models for spinning particles on the classical level. This
equivalence is valid, also, on the quantum level as it will be shown in the next
section, in the sense that both classica] theories will lead to the standard
quantum theory of the nonrelativistic spin | /2 particle.

5. PATH INTEGRALS FOR THE NONRELATIVISTIC PAULJ EQUATION
IN THE CURVED CONFIGURATION SPACE

The amplitude Ky, of the transition of the point top from the initial state

P, t; &) = (&) H(x,, 1,), (5.1

to the final state

D(xy, ty; &x, ny) = 6 (& ) ¥(xy, ty) (5.2)
is defined by

Kyo= %nxﬁ AM .m.ov Dx(t) x

y % exp @ Mv G @G PGy P20 2e0) (5.3

where S, S, are given by (2.18) and (2.19), respectively, ¥is a Pauli spinor, ¢
is a two-component spinor chosen by Petrgs [9]

oxLHIMQ\.T SL cos 2
= 2 : (5.4)
Immxwﬁlw@l .\VH_ sin o
2 2
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{* is the hermitian conjugate of the spinor {

~ <
_H_ + m %EAXzVNn\N\Q
Dx(t) = Qrif Ay s

141 R0 z5- 25 Jtson_

dxy_ x .
g Qrifid,_ )" -
T + W Rep(%) NM.N& [2(x,)]"
x NPT d’x, x
2rif A)
|1+ Rutn) z:2¢ tg0or”
X Qu.x_
Qrih )7
o 2e@) = L0LE End'y  dny &gy
! Qnhy’  Q2nh)’ k)
A=t —t; Zi = xl = xt 7, = 1(1);

&=4¢&()and R, = —8“Rypuo-

To perform the integration of (5.3), we have to &mo.nnmNo both parts of the
action (2.18) and (2.19). For the orbital part of the mo:.oF we shall follow Um
Witt’s discretization [1] with some modification which 1s :ooommme. to obtain
the correct form of the orbital terms in the nonrelativistic Paulj equation for the
amplitude Ky ,. The modified discretized action is given by

So= 3, " {eCutn ) 28,21, - a5 ) 201 21, 28, +
=0 24, .,

+ %@s&xx D — 8%, ) (v, al [¢5, B +
+ [ue, al6v, Bl + 6, dl[ve, B) Z¥, 21, , 2, 2P, M +

| — <
+ ZM_ m W|W§<A3+_V\A\A3+ DZio+ M \AF.\AX:LN“V_ .;:w -
i=0 C
=4 5.5
= M NQAXIr_vBT:. (2:5)

i=0
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» 13 given by
N-1
S, = N.M\c n.(t) E:QI ) — &) — Ealty) 7.(ty) (5.6)
where
7 g ~
Eat) = &) + 4, @), + M Eim(By)i 4 | Vi (X; 4 DZE | —
1
IM m\\SA@.\var 1 3§F<A*~.+ _VNW+ _N...\AT_ -
1
- W. \.\Sam.»\_i_ A@\Q.v...* I g\\-:tA*.. + _v 3_§_<A3+ _v NW.* _N.ﬁ. 1 AM\NV
—e BB _
a, = e o, [5,(&, m) B,(x)) (5.8)
@\: = *jkn ﬁ» + Q\N: AMOV
A\J\»: = _M..\.W\a: AM —Ov
ds.\ 0
§ ALV 9
j o, 3¢, . (5.1 )
i
S;n* (¢, SMM § (& o (5.12)

@)y, = a,(& .., L/ k..+A 1)
@?vl. = 0,(¢, ,, 7:41) (5.13)
A@\svl_ = Q\.?Aml 1 Myp).

The integration with respect to the spi i i
. Pin variables in (5.3) ca
will lead to the following result G- canbe eted ]

% exp @ ,&v $Cns ) $H(&) AP, &y Du(0) 2£(r) =

- ie 1
~ N L+ szﬁ ﬁiv - Nam & xiév +

i
+ 247} Aw St Vo ?& o+
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N§N<wm.& Akvq wm Vim o (Xn) O, 15 % .
\<>~ L. im Flmu\AN) U A kiym, LmvAAN) U

1
2
i i
vee X W~ + ﬁb_ A'&' w.:ﬁk_vv - N%AI. mw_.ea v\ﬁemﬁk_vv +
2mc 4
i
+ NmeAW Eiipg ﬁEm.qu_vvg g, +

_ m m
+ M N%N_QAM .m.\._g u\hanﬁ*_v Ow_v AM hk_h_e_ v\wl_qﬂk_v Q.w_vw . A.m ~A.v
By inserting the result (5.14) into (5.3) and applying the same procedure as in
[14] to get the Kein-Gordon equation; one will get the following partial differen-
tial equation for the amplitude K ,

7 OKyq = HKy, (5.15)
ot
where
1 h o e h
sl o))
2m(g)'* (Li ox* c 4
#i 0 h
X T@E%Eﬁw - Am A4, + - klym, Sms?o.»vggw -
i OxY c 4
e #?
—— 6. B+ep+—R. 5.16)
2mce ¢ 12m (

R is the scalar curvature of the configuration space and O,i=1,2, 3 are the
Pauli spin matrices.

In the case of a flat configuration space, equation (5.15) becomes the non-
relativistic Pauli equation for the spin 1/2 particle.

6. CONCLUSIONS AND DISCUSSIONS

From the orbital equations of motion (3.6), one can conclude that particles
with the same spin and different masses — and vice versa — will move on
different trajectories. From Sect. 3, one can conclude that it is not neccessary to
use the Grassmann variables for the description of the classical nonrelativistic
spin degrees of freedom, but ‘it is enough to use the commuting (ordinary)
variables. This conclusion was obtained by Schulman [15] and Bezak
[16]. From Sect. 5, one can conclude that the point top as a well defined classical
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o.E.mQ from both kinematical and dynamical points of view is a suitable can-
didate for the spin 1/2 particles.

APPENDIX

.ﬁro aim of this appendix is to prove that the action of the nonrelativistic
point top moving in an external electromagnetic field in a curved configuration
space (2.20) is invariant with Tespect to a general local rotation of the dreibein
<oo.8_,m.. _u rom the Routh function (2.21), one can see that the orbital part of the
action is invariant with respect to a general local rotation of the dreibein vectors.
Also from the equation of motion of the spin s, in a flat space and the Poisson
bracket (3.3), one can conclude that the spin s; behaves as an ordinary vector

. : e .
with respect to rotation. Hence, the term -— B;s; is a scalar. Therefore, to prove
mc

that the action (2.20) is invariant, one has to prove that

1 1

n&i— M ik &@&ct = dmww. - .N. Ly Vi Si0" (A.1)
which is equivalent to prove that
; . 1
on ¢ + 7,68, = M Eie [V O; + %A&.@v s]v* (A.2)

where

N...\“m...*.%m.t n; = 1; + o,

S =s5;+6s , Vika = Yiku + %Cu.»tv

8¢, on, S5, and 6(¥u,) are the change in the quantities m: M, 5; and y,

- . . . \A i
respectively, due to an infinitesimal loca] rotation of the dreibein vectors, ,Emn

mE.samE way to find the quantities 8¢, n; and &, is to calculate the following
Poisson brackets

6 = IF &, én; = {F, n3

os; = {F, s},
where

= —s,0p,

is the mmsonmaam function of the infinitesimal rotation and Jg, js the infinitesimal
angle of rotation. From these calculations one gets

86 = — e & + a,£) 89, (A.3)
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Oq,
on, = ﬁHm.; M+ o1, + olm Tk m@ 3¢, (A.4)
%.wm = -.\.k%k%%\. A}.Mv

By differentiating (A.3) with respect to the time one gets

8 = —(epbi+ G& + 0 £) 6p,—

— (& ée + ;&) v"(Sp) . (A.6)
From the definition of Y#u (2.14) one can prove that
%G\\.Fv = (& Vi Eiim Nﬁv 6¢,, — \.tﬁwe_vi. (A7)

By inserting the results of (A.4), (A.5), (A.6) and (A.7) into (A.2), one can prove
that the left- and the right-hand side of (A.2) is equal to

—sp*(6p) ,

which means that our aim has been achieved.
Also, using the previous calculations, one can prove that the action (4.10) is
invariant with respect to a general local rotation of the dreibein vectors.
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