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THE SYMMETRY PROBLEM OF THE
ENERGY-MOMENTUM TENSOR AND THE
CREATION OF A GRAVITATIONAL FIELD

DUBEC, M.,” Bratislava
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the action of the EMF on the medium describes, the better the EMT of the EMF
in a medium it has been regarded. However, we need the EMT describing the
sum of a 4-momentum of the EMF and of the variation of the 4-momentum of
medium caused by the field, only such a tensor will be called “the EMT of the
EMF in a medium”. And such an EMT must not describe the forces acting by
the EMF on the medium, i.e. the momentum-exchange between the EMF and
the medium, because the variation of both momenta has to be described by this
EMT. Those forces are given exactly by the EMT of the EMF itself. In the
present paper we shall see that in a homogeneous medium the sum of densities
of the 4-momentum of the EMF and of the variation of the 4-momentum of the
medium caused by the field is given by Minkowski EMT.

The original aim of the present paper is to obtain the source of a weak
gravitational field (GF) generated by a variable EMF in the medium. It should
be given just by the above defined EMT of the EMF in the medium, however,
it has to be conserving and symmetrical, because such has to be the source of
the total GF and such is also the source of the GF in the absence of the EMF.
But the Minkowski EMT is not symmetrical and the corresponding Hilbert
tensor, which should be the source in the sense of the Einstein equations, is not
conserved. Thus, the present paper is devoted to the solution of all these
problems.

We use the natural units, i.e. ¢ = 1,

2. CANONICAL FORMALISM WITH EXTERNAL FIELDS

We shall work in a Minkowski space with the metrics

dt—\”ﬂwmmﬁm. lr |_u |~v AN.~V
and consider only the Lagrange function of a non-gravitational matter
L(@, 8 € (2.2a)
in which we put
Nt-‘ = dt.\ AN.N_UV

(but this cannot be done before obtaining the Hilbert EMT, see eq. (2.8)). Here
@, are all the considered physical fields satisfying the Lagrange equation

0L/é¢,: = 0L[/dg, — 0,0L[0p, , =0 2.3)

and ¢, are the “external fields”, not satisfying this equation. The indices a, b ...
denote various fields and their tensor indices.

In the absence of an external field there can be obtained a conserving,
canonical EMT [2]
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a) I =3 (L/dg, p ¢, ,— 6°L; 2.4
b) H.uu =
and the tensor of the spin-momentum

a) S =3 (@L/og, ) L%, 2.5)

a,b
By afuy __
b) 0,[S* + M) =0,
) MoPH Naﬁ? — Nmﬁé.
where £22% is a rotation matrix. However, if the variation of the form of some
field vanishes during the transformation, generating the considered conserva-
tion law, the field does not violate the conservation law, whereby we need not

any additional restrictions of the kind (2.3). Therefore, the EMT conserves also
in the presence of a constant external field

. = const. , 24¢)

the form of the latter being invariant under translation. But the tensor of the
total MM is not conserved, except for a trivial case of a scalar constant field.

The tensor (2.4a) can be asymmetrical. Then the Belinfante symmetrization
procedure:

mv Ham - Hnm + WOWES + S __ U;amtv.tu AMQV
b) 3,7, = 3,T.%

gives a symmetrical quantity 7; if the relations (2.5b, ¢) hold. So in the presence
of a constant external field the EMT conserves, but the “symmetrization” (2.6)

does not give a symmetrical tensor. Any EMT can always be symmetrized using
the quantity M“# instead of S%* in the latter symmetrization:

a) T = 4T | xep T 4 w?gwa + xPTe; Q.7

b) T@: — wﬂa + TPy,

But this EMT has, obviously, no physical meaning, depending on an arbitrary
choice of the origin of space-time coordinates.
The Hilbert tensor

VBT = 20(Jg )% g = Idetgq, 28)
is always symmetrical and according to ref. [1, 3] should satisfy the relation
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T, =T, (2.9a)

However, the last relation is possible only providing .

g,=0, (2.9b)
the same condition being required by the conservation law
0,7 =0, (2.9¢c)

since the latter is ensured only by the invariance of action under a variable
displacement of coordinates.

3. THE ELECTROMAGNETIC FIELD IN A CONTINUOUS MEDIUM

First of all we have to remember that we need Emoﬁom:% the EMT describing
the sum of the 4-momentum of the field and of the variation of the PBQ.:Q:E:
of the medium caused by the field. Therefore, the EMT has to satisfy the

condition

0,T% = —f" = —Ffj*, 3.1
where j* describes only the conduction currents and
ﬂﬁ — @Q\AE - @E\Aﬁ AW.NV

is the tensor of the electromagnetic field. Such an EMT is known only in a
homogeneous medium as a Minkowski tensor:

1
ry=L A%gﬁ +1 %%emav , 3.3
n
here
a) H? = ¢°F, (3.4)
b) £P” = g0 = — gofeo = _ gt

" e afoc
The last relation follows from the definition of the vnnBE.SQ. ﬁasmn.: £ by
means of its value in the rest frame of the medium (assuming its existence):

H* =y 'F*, H*® = gF*, 3.4¢)
using the harmonic coordinates [4, 5, 6, 7]
24" =0; g =\gg". (3.5)
The field equations
: 3,H® = arxjp 3.6)

are obtained from the lagrangian
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1

S aff o a;
Top SecBnol TH — g pa%P. (3.7a)
Further we put
Then JF=0. (3.7b)
| 1
Nv th”'ﬁx& nmhhl_ll.%bm. e
il 7 Qafetl [, (3.8)

b) S — M_w [H*A" — Hraq8),

and we can easily check that the Minkowski EMT (3.3) is in fact the result of
the Belinfante .&\E&Qlunaq:: (2.6) of the canonical tensor (3.8a). In a ho-
mogeneous medium it conserves in the case (3.7b), but is not symmetrical, in

3

a mv\Eﬂ.:oSomr conserved EMT from this lagrangian.
In literature also the EMT of Abraham is considered:
TE=TH=T¥, TF=Ty (3.9)

which is useless for us, being not conserved in a homogeneous, chargeless

medium. There exists also the “radiati ”o 1
! adiation tensor”, in the rest fi
medium defined as » rame of the

T =(eu)'Tj# = T, (3.10)

giving by a gu-times smaller force-density than the condition (3.1) requires
2.02 we shall see that only the asymmetrical Minkowski EMT gives a oo:.aﬂ

relation o.m the energy- and momentum-densities, required by the 4-momentum

conservation in the Tsherenkov radiation. Denoting the 4-momentum of the

S&mﬁoﬁm v.ronos as ok® and the corresponding decrease of the 4-momentum of
the radiating electron as ép°, we have

o’ = 8k° =
Where P s 10p| = [6K] cos o, (3.11a)
cse=m)",  nm=eu, v=pp (3.11b)

Relation &p? = 0 gives P°8" = |p| |8p| and so
|6k/SK| = n. 3.11¢)

But just this is the ratio which gives the momentum-density
1
T - — :

M uaG x B), (3.12)
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with the energy-density 7, in a plane wave and, because the velocity of
propagation of both quantities is the same, also the corresponding flux-
densities. Similar conclusions were first obtained by Ginzbur g [8]

Thus the correct EMT of the EMF in a continuous medium has to be
asymmetrical. It gives the enlarged ratio (3.11c) with respect to the velocity of
the field-propagation moving the “photon”. The latter fact itself has no physical
meaning because 8k° describes only a part of the energy-density, but it implies
the Lorentz non-invariance of conservation of the corresponding angular MM,

But althoug we do not consider a total energy-momentum of the EMF and
the medium, we are looking for such an EMT, the variation of which, caused
by the variation of the field, is equal to the variation of the total EMT. Just such
a quantity would described the creation of the variable part of a weak GF
(satisfying the principle of superposition) by the variable EMF in the medium.
This requirement is mathematically described by the condition (3.1), because the
EMT describing some system cannot give the force-density between the parts of
this system.

4. THE SOURCE OF THE GF CREATED BY THE ELECTROMAGNETIC FIELD
IN A MEDIUM

The resulting difficulties with the EMT are connected also with the ap-
proximation of the local relation (3.4a) between the tensors Fand H. In the case
of a homogeneous medium, we are able to introduce such a non-local term into
the lagrangian, which influences neither the canonical EMT nor the dynamical
equations of other (non external) fields, ensuring the Lagrange equations iden-
tically satisfied by the external field:

a) L,= L+ AP%Q,¢,,,, “.1)
Gv @ n§v~%©“ = %.N\\ %mnbwm.

Obviously, the canonical EMT, corresponding to both these lagrangians, do not
differe when

@mm&&\ ey A&. an

Let us obtain the part of the spin MM (2.5a), corresponding to the “field”” of

permitivity. Due to the symmetry-properties (3.4b) of the latter, it can be written
as

m.v .M.nmk — A\Anno.nt.mmms _ A(Ab@&rhh@n.: : AA.NV
b) 8,5 = T,# — T}k,
O T — Tfe = — (P}~ FAH.
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Of course, the determination of 5% can start just by the relation (4.2b)

mWSEQ:NEm any mz,ﬁ. The previous consideration is useful to understand the
physical sence of this Symmetrization, which gives

T8 — T8 .m aoff
n + 5 0, (S 4 gheay 4.3)
In the considered case, the Hilbert EMT has here the form
1
T8 . b Feerrd ul_ 2)
& mﬁﬁ HE + H®F 5 mw\ﬁ.@qm%‘;‘. 44

.Z:.w man:.:os. to .26 Hilbert tensor, ensuring the conservation of the obtained
quantity (4.3), is given by condition (4.2b) ambiguously, so we can put |

.M.nmt" 4 B af, _. a
then 0P, 0,04®%; = ¥ — T, (4.5a)

TY = T .o I~. B a
A+ 0, (07 P + degphey (4.5b)

At first sight one could conclude that the given method gives an inadmissjhle
appearance of the source of the GF outside the medium. However one has .8
._.oz.,.nacﬁ that this source serves Just to ensure the conservation om. the mo.znn@
Smao. the homogeneous medium; already on its boundary we do not have even
a correct expression for T,%. But the contribution of the thin boundary layer wo
GF can be neglected, and outside the medium a usual Hilbert EMT in the role
of a source of GF has to be used, rejecting the non-local additional term,

The creation of a weak GF can be best described by the equations [5]
3) 970,059 = 424’ + 2u(—g) 1% + T, (4.6)
b) 0,4 = 0,
giving in the first order of » simply

0,0%% = 23T (4.6¢)

the stresses caused by gravitational forces contribute to T'* so that the low .ﬂ
oanﬁ of contribution to g™ is the second. In this order Hmo source is in mMMﬁ
oo:H.:vEma, besides T, also by other terms of the right-hand side of e 4.6 v
But in the first order only the EMT of the nongravitational matter has _,.M .co EMQ
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in the role of the source, taking no GF into account (the latter can, however,
influence, e.g., the distribution of the mass).
The solution of a weak gravitational wave has the simple form
3
4k .
q¥=—| T%dV;  x=8nk. 4.7
r J(re)) '
Due to the conservation of T, the lowest non-vanishing order of expansion
with respect to retarded time is a quadrupole one, i.e. the zero order for T%, the
first-order for T and the second order for T% and the expression

g =& myiceay (4.8)
;

can be obtained.
Here again one has to avoid the incorrect statement that the trace of space

components ¢* and the components ¢°* can be removed by means of a trans-
formation of the coorddinates conserving the condition (4.6b). Due to Fock’s
unique “theorem’ for harmonic coordinates [4], for the case of a linear ap-
proximation correctly proved by Todorov [10] who used a more accurate
mathematical formulation of the assumptions, no more non-linear transforma-
tions of coordinates can be performed without introducing an additional,
non-physical ingoing gravitational wave (linear transformations are excluded by
asymptotics).

Nevertheless, the mentioned “longitudinal” components of the tensor density
¢ do not contribute to the EMT of the GF in a weak, flat gravitational wave,
when they can be written as:

a) 1= pnpy0,  m- L 2 @) (4.9)
43 ik
Uv DNUH —g zc“ ~w Q.o:"k»&.»&”v&.ooﬂ:_.:»ﬁ.%,
Ov QN« s Q.» _ Q.?..Ew _ Q.Q»RN + Q.oo\i.:k + WA%_# _ xm\\av M.ﬁﬁ.nm —
« il o N i _. i 5
=g — gin* — ¢in' + 7 n + 8)q,,

_l
3
The relation in (4.9d) is the harmonic condition (4.6b) on the coordinates. In

these coordinates the EMT of the GF is defined as Einstein’s canonical quasiten-
sor [5, 6], which has in the considered case the same value as the quasitensor 7,

of Landau-Lifshic—Fock.

gl =q*—~-8,4", qi=qg*n*, q,=qn' (4.9d)
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5. CONCLUSIONS

When external fields, not satisfying the Lagrange equations, are present in the

lagrangian, the .aw:m::mom_ Invariants generally cannot be obtained from ga

&%Mm.a. Only in .Q_m special case of a homogeneous, constant external field we
obtam a conserving, but not Symmetrical canonical EMT and we do not obtain

mU m

clearly its sense. We define this quantity as the EMT describing the sum of the

densities of this sum are given by the components of the Minkowski EMT, this
moz.oé.m from Eo. conservation of the energy-momentum in the Hmzonnmwo<
Mma_m:o:.‘,_,rn Minkowski EMT has been obtained as a result of the Belinfante

symmetrization” of the corresponding canonical EMT. In an inhomogeneous
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NPOBJEMA CUMMETPHUU TEH30PA SHEPTUM-UMITYJILCA
W TEHEPHPOBAHUWE I'PABUTALIMOHHOI'O TNOJSA

B pabote paccmatpupaercs npofnema cuMMeTpun TEH30P2 IHEPrHU-HMITYJIbCA INEKTPOMAr-
HUTHOTO OJIA B cpene kak obuias npo6iiemMa B paMKax JarpaHieBckoro HOpMaTu3Ma ¢ BHEIIHAM-
nonem. [Toxasano, 4To acCHMMeETpHYeCKHil TEH30P MHHCKOr0, NPEACTaB NSO «CHMMETPH3UPO-
BaHHBIH» KAHOHHIECKHA TCHIOD IHEPIHH-HMITYJIBCA, TPABUNIBHO OHUCHIBACT IKCNEPHMEHTANIbHBIE
AaHHBIC B OnHOPOAHOH cpene. OmHAxo HAM HEOGXONHM CHMMETPHYCCKHI H COXpPAHAOLIMICS
HMCTOYHHK PAaBHTAHOHHOTO NOJIK, B TO BPEM3 KaK CHMMeTPHueckuit Tersop ['unsbepra, xoTopbiik
CIICAYET HCTONBIOBATE ANIA ITOH Lenm, He coxpaHseTcs. ITpenoxen GopManbHbIi METOA NOTyYe-

HHS TAKOro HCTOYHHKA.
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