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A STOCHASTIC THEORY OF WEAR WITH
A QUADRATIC ANNIHILATION RATE
PART 11

BEZAK, V.." Bratislava

The continuation of the preceding contribution to this issue of APS (Part I)is

presented. The theory of Part I js generalized for the case when V(x) =¥ + Ax? with
Vo = const. > 0. .

IV. THE CASE WHEN V)=V +ax, 1;>0, 4> 0

IV.1. The parallel between C (x, B; x,) and g(x, ¢; Xg)

<<ro.= including a constant Vs into the potential energy in equation (9), we
os_v.\ m.Em the energy scale. The corresponding transformation of the quantum-
statistical density matrix is simple:

Cx B x0) = exp (= BV) Co(x, B; %), f>0. 47

For Cy(x, B; x,), we have already derived expression (12).

Similarly, for Green’s function satisfying equation (3), we may write the
result .. ‘

8%, 15 x)) = exp(—1H) golx, 1; x), 1> 0 (48)
where gy(x, t; x,) is given by expression (17) (or (19)). We may also write
P(xo 1) = exp(—1Vp) By(x, 1), >0 (49)

using expression (24) for Dy(xo, 1),

IV.2. The lifetime distribution ¢ (7)

m.ﬁ Is convenient to measure the time in units of @' (cf. definition (18)). Then
we introduce the dimensionless parameter

s=Vjo>0 | (50)
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slovakia “
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and write
SAH? Nv = e.nﬁ.vﬂou Nv = OJ,RSSOA.X? Nv . Ammv

(@t > 0O is then the dimensionless time variable.) Thus, according to formula (2),
we obtain the lifetime density

_30,(xp 1)

= [po(x0, T) + s@Dy(xy, 7)] 7", (52)
or

S.qﬁuho“ N.v =
The statistical moments (7" calculated with this probability density will be
denoted as (7", m, o’ (This is in consistency with the subscript zero in
expressions of Sections I11.2 and I11.3.)

IV.3. The mean value and the r.m.s. deviation of the lifetime 1
for x; = 0 in the wearless case

Using expressions (24) and (28), (29) in formula (52), we can — for any value
of u > 0 — numerically calculate the statistical moments

(T, = — % der 9% 0
o or
(n=1,2, ...). In our further analysis, similarly as in Section I11.3, we shall only
consider the value x, = 0. ,
To calculate the moments (7", by the perturbation technique of Section
IT1.3.2. we must cope with the integrals

= :.—. der" "' D(x,, 7) (53)
0

1 (" tanh y
L[ b “
) 2dh 7 (cosh y)'? A
1” (tanh y)?
0= gy 5
) 20 7 (cosh y)'?

(n=1,2,..). (In Section I11.3.2 and in the Appendices we use the denotation
A,, B, for 4,(0), B,(0).) Note that

A(s) = A' wv A(),  Bys)— Alwv By(s) (56)

for n = 25 3, i
For simplicity, we will only discuss the wearless case here (when 1 = 0). Then
the integrals B,(s) drop out in futher calculations. On interating 4, (s) by parts

one finds out that
A, (5) = nC,_(s) — sC,(s) n=12..) (57)
127



where
o —sy
m;@u% dyym & =1,2..).
o Y ey L2 (58)
These integrals are derivatives of Cy(s):
C,(s) = A - mvsn (s)
m 4/ T (59)

For s = 0, we have the values

|
m+ 1

Cals) =

Aner  (m=0,1,..)!

IV.3.1. General series for {HO

. For the integral C,(s), we can, following the way indicated in Appendix A1,
directly derive the series

[+ 4] g
QSL‘ dy —& -
’ 0 onom‘rEE
_ _~+W»n_ T:ZN\T:_._ 1 . (603
o "
@ ]
2 2

This mo:.mm i 50 .m::Ew and easy to be programmed that it need not be transfor-
med into anything else. We could, anyway, write in general

C) = 2 Arxthvhﬁimy -1)
1 2 2 2/ 2 2

s+ -
2

where F(a, b; c; £) is,the Gauss hypergeometric function (usually denoted as )
by mathematicians [10—13)).

Note that we can calculate the integral (60) directly for half-integer values of
5. So we obtain the values:

1
qo@v V2Arsibn1 = \/2In(1 + V2),

QOAWV = 2, etc.
2

It
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Thus, taking for instance s = =, we can easily estimate the precision with which

2
we may replace the infinite series (60) by partial sums (fixing some index / > 1
and dropping terms with k > /).
When bearing in mind formula (53) and expressions (4), (51), we can write
the moments of 7 in the form

n

AivmsnM n—1(5) (61)

Thus, by using the relations (59) and (60), we can express each moment (7>
as an infinite series. For the first and second moment, we have the results:

@=Ly, (6
»
@9 =2 ¢ = - 2950, (©3)
@ o ds
One property of the moments {7 is obvious; they decrease as functions of
5. (Indeed, e.g., for s = 0, we have found the value o{H{ =2.622 and for s = w

the value @ {7){} = 2.)

Instead of a further commentary on the numerical aspects (which do not
imply serious difficulties) of employing formulae (62) and (63), we prefer to
discuss the asymptotic cases when either 0 < s < 1 or 2. | < 5.

IV.3.1. The case of small values s (0 < s < 1)

If 5 is small, we may write
eV=1—sy+ W s+ 0(sY).

Formula (53) then gives the results

A%L ?_ -4 %v +g3,
(0]

N_ _
Aﬂwvmsn mcl~ Am }t w \Auuv +QQNV.

(Note that C,_,(0) = (1/n)4,, n =1, 2, ...; with the values of Ay, A,, A; given
in Appendix A.1.) Thus, in the approximation linear in s, we have the results:
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1
m® = (D0 =~ (2,622 - 5.558s). (64)
[0}
o0 = (O — (popyn L TN — AR ﬁ a1 .\i“v L =
@ 3 2
1
=~ (4.240 - 7.9745) = 50(1 _ 1 831, (65)

IV.3.2. The case of large values of s (Il <)

If the parameter A > 0 of the annihilation rate ¥ (x) is small, the parameter
s may be large even when ¥, (the “background annihilation rate”) is small (recall
Q.omsaozm (18) and (50)). In the limiting case when s - o (or A -»0), the
dimensionless lifetime Y = @t becomes a Poissonian random variable. Namely,

then the mean value and r.m.s. deviation of y become equal, m, = o, and we
have the resuit:

D=~ =t

[+

Now, our aim is to show how the moments {y),, (y*>, (or the cumulants m,, o2

get different from the Poissonian result if 5 is large but not tending to infinity
yet.

. Itis clear that for s > 1 the main contribution to the value of the integral (60)
1s due to values of y close to zero. We may, therefore, write the development

1 1

=l—-—y24 .
(cosh y)!”2 4 e
and insert it into the integral (60). So we obtain the approximative function
1 I |
o =1(1-2)rof1)
o(s) . oy = (66)
Then the formulae (62) and (63) give us the moments
1 1 |
= (o= (1= L)+ o(1)
s 252 s%)° 67
I 3 1
O__ > [r_2 -
7= @’s? AN wwv * onv . (68)

Hence, we obtain also the corresponding approximation for the r.m.s. deviation
of the lifetime 1:
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1 I 1
o= (1-5) o ).

V. CONCLUDING REMARKS

In the present paper (Parts I and II) we have shown that utterly distant
theories — such as the probabilistic theory of wear (that for someone might
essentially be the same as the reliability theory) and the quantum theory — may,
to a great extent, have common mathematical features. We have especially
called attention to analogies between a specified theory of wear (reliability)
making use of an annihilation rate of a quadratic form ¥V (x) = K, + Ax?and the
quantum-statistical theory related to the one-dimensional harmonic oscillator,

The theory of wear (reliability), as it was set out here in accordance with an
idea of Ref. [1], may find various applications in technology, traffic, health
matters, planning of industrial outputs, etc. Nowadays, undoubtedly, demands
on service life of such appliances as, say, the microelectronic circuitry in com-
puters or cosmic stations are extreme. Of course, the service life is not insignifi-
cant even for such traditional goods as, for instance, water-supply conduits
which, unfortunately, are apt to corrode. The same statement holds, and is
ominous, if one speaks of the arteries of the human body.

Any success of our theory — if a trustworthy prognosis is required of the
expected lifetime of anything (anyone) — is, however, much dependent on our
capability to be realistic enough in contriving a good expression for the annihila-
tion rate function ¥ (x). In real situations, this function need not always be
quadratic; in fact, it may be an arbitrary non-negative function. Nevertheless,
in such a case, the reasoning, as expounded in this paper, may be pursued
further, owing to its methodological generality. .

Mathematically speaking, the theory has three inputs: 1. the parameter y > 0
characterizing the intensity with which the system in question (described by a
state variable x) is exposed to random shocks (cf. formula (1)); it is a notion
defining a Gaussian white-noise process, 2. the parameter y > 0 characterizing
an average wear rate of the system, and 3. the annihilation rate function
Vix)=0.

Having chosen y and u as constants and V(x) as a quadratic function, we
have calculated the lifetime probability density of the system and, with the aid
of it, the mean value and the r.m.s, deviation of the lifetime.

Naturally, there are many possibilities of generalizing our theory. For exam-
ple, one may take x(r) as a non-Gaussian process, or at least one need not take
Y as a constant; the theory then becomes much more complicated. The
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generalization would be simpler if we allowed 4 alone to be non-constant: jp

Brownian-motion analogy, this would mean the occurrence of 3 non

drifting force. Finally we could take the annihilation rate as a time

. ~dependent
function.

here find some new applications,

APPENDIX A.1
On substituting y = g into formula (34) we obtain the a-dependence

(P =L 4,
@

where

;,x 8::& .—,8 E ,
;ulaN nNa . 9
Pl (cosh y)'”2 i (cosh y)'2 (

(The identity of these integrals can be proved with the aid of integration by
parts). Using the denotation y = e % we may write:

Y PN N
(1 +w”

(coshy)i2
As u is smaller than unity, we may use the McLaurin development:

After inserting this into the second integral (*) and integrating it term by term,

we obtain the serjes
1 = @k-n1
A, =8 NTIIJF — 1) g
2 =82 50 MN_A ’ QRN @k + 1)

It is useful to group the terms in pairs; using n = 2k (for even values of k), we
obtain the series

k

A, = Mf\mmo.ow + m »,v
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where all the terms R, are positive:

»uﬁzl_:_Tl 4n+1 Amfiﬁ 1

T @ 2@n+1)\8n+5/ 1 8n+1)?
It is sufficient to take into account n < 10 in order to obtain the value
A, =11.115.

Note that if we used the same method in calculating the integral
1{ tanh y .ﬁ ® 1
Ai==] d =1 dy ,

"o H, o (coshy)'? Jo 7 (cosh y)'

we could arrive at the same value, Ay = 2.622, as in Section IIL.3. 1, although we
should have to sum up considerably more terms than in case of 4,. .
On the other hand, when we apply the method to calculating the integral

1" 3 tanhy ,‘,8 5 1 s
=-| d =31 dyy
4 M.—A.- w (cosh y)'”? o (cosh y)'?2
we obtain the series
1 © QRk—D1t 1 y
= ~ — T AT — m i ’
4a=48 ,\mm 250 »MNA ) Qb1 (8k + 1)
which is rapidly convergent. The terms with k 2 6 are negligible. So we obtain
Hhesalug Ay = 67.638.
APPENDIX A.2
Now our problem is to calculate the integral
1{~ (tanh y)? (va)
==| d :
B N.‘M i (cosh y)'”2

Putting U,(y) = y tanhy, ¥,(y) = — (cosh y)~'2, we can transform B, into the
form

e o0 -V\
’ w\ - N + v‘. AH .
.w_ = '.‘Mw Q—\Q~ Qv —Qv o V Aﬂhvm—.— vu\N

On the other hand, when taking (tanh y)> = 1 — (cosh y)~2, we can also write

®© y ke y
2B,=| d - % dy :
1 ._Hr. y AOOmr.E_\N o AOOmr\cvM\N

133




Thus, using definition (+) of Appendix A.l, we derive the relationship

I
wm._HN.T.N..AN

from which we obtain the value
B, =2.519.

Similarly, we can also calculate the integral

|~s Qm:réw
B, = MA‘M dyy? (cosh )2 s (#%x%)

Integrating it by parts, with U,(y) = yitanhy, V,(3) = — (coshy)="2 and using
the denotation {*), we can write B, in the form
0 o0 2
B, = % UG Ko) = 44+ | dy —P°
¢ °  (cosh y)"

Expressing (tanh »)*as 1 — (cosh ¥~ we can also write, using definition (*x):

1 e y?
2B, =~ 4, - dy .
3 o (cosh )32
Hence, we arrive at the equation
1
www == A\h_ -+ w \Au
which gives us the value
B, =11.011.
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CTOXACTMYECKAS TEOPUSHA M3HAIIMBAHUA C KBAJAPATMUYHON
CKOPOCTBIO YHHYTOXEHMS. YACTS 11

Ilpeanaraercs npoxonxenue ApenwlaylieH CTaThH B 3TOM Bhnycke APS (Macts II). Teopus,
npusencnas B Yacru I, 06061imena ua cnydai V(x) = ¥ + Ax* ¢ ¥, = const > 0.
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