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A PATH-INTEGRAL THEORY OF LASER-CONTROLLED
REACTIONS WITH POSSIBLE APPLICATION
TO PHOTOLITOGRAPHY

BEZAK, V.," Bratislava

Equations of diffusion are solved for two components undergoing an isomeriza-
tion reaction (a chemical reaction of the first order). The problem is analysed in regard
to prospects for a local control of the chemical reaction by a laser beam. The final
results are presented as functionals with a kernel calculable by the standard Feynman-
-Kac integration.

I. INTRODUCTION

As it is well known, intense fields of laser beams can foster chemical reactions
which otherwise would be either absent or ineffective. These reactions may run
in a very local way since the laser beams, or fractions of them transmitted
through windows in diaphragms (masks), can be — when considered in terms
of the geometric optics — as narrow as, say, ten times the optical wavelength.
This is, of course, crucial for photolitographic techniques used in the contem-
porary microelectronics. Whilst the “industrial photolitography” has enabled
production of integrated circuits with elements measuring about 3—5 mi-
crometers [1], there are still possibilities to use the optical litography for ma-
nufacturing circuits with elements as small as one micrometer or slightly less.

When studying laser-generated reactions (in a photoresist or another
medium) confined to narrow regions, we must pay attention to two issues which
were usually ignored in the classical theories of chemical reactions: i) non-
uniformity of reaction rates (due to radial energy-density gradients in the laser
beams) and ii) presence of high concentration gradients leading to non-neglig-
ible diffusion processes. Then, in general, the kinetic equations for the con-
centrations of the components entering the reactions may be non-linear since:
i) the reactions may be of higher order than the first, and ii) the diffusion
coefficients may depend on the concentrations.
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On the other hand, even when we refuse such complications and allow only
for the first-order reactions, and for constancy of the diffusion coefficients, we
are still faced with non-trivial kinetic equations, because there are many various
Mo.ﬁnam_iom for spatial and temporal modulations of the reaction rate coef-

cients.

Therefore, in the present paper we focus our attention on the following linear
system of the diffusion-reaction equations:

oC
Mm =D, V’C, — W,,C, + W,,G,,
(1)
oC.
tm% = b~<~ QN + S\GQ_ - E\N_QN.

Here D, D, and W, (r, 1), W, (r, t), respectively, are two positive constants
(diffusion coefficients) and two non-negative functions (reaction rate coef-
m.omoamv. Our aim is to show that the fundamental solution (i.e. Green’s func-
tion) to equations (1) (for £ > 0) can be expressed by means of the Feynman
—Kac path integral [2, 3]. Recall that the Feynman—Kac integral

Eién % ,°@.€ es * % &H wv i\i@ ﬂ% @

is the solution of the equation

oG
l@ﬂubﬂml Vir,) G, >0, 3
satisfying the initial condition
G(r, 0; rp) = 6(r — rp). Q)
Clearly, if we introduce the two-component function
_(G, av
C(r,ny=\|!
0= (D ©

we may define the 2-x 2 matrix Green’s function

G(r,t;r,) = AQ:Ah 1) Gur i ﬁov ©)

QEAﬁ L ﬁov QNNA_J t; \cv
so that

C(r,1) = [ &r,G(r, t; ry) C(r,, 0). @)
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Then, interpreting D and V as 2 x 2 matrices,

bo S\Ixx
bian _ v <l<nA ; M_v, @
0 D, -Wy Wy

we may say that equation (3) for G — G is equivalent to equations (1). Thus,
what we will present here is a two-component generalization of the Feynman-
-Kac problem.

If D, # D,, the generalization is fairly difficult. It is rather surprising but it
is not at all easy, for D, # D,, to obtain exact solutions to equations (1) even
in the simplest case when W,,, W, are constants! Therefore, first we take
D, = D,. With this stipulation, we can derive — as shown in Section Il —a path
integral solution to equations (1) for the quite general functions Wy,, W,,.

The rate coefficients W,,, Wy, can be varied by laser beams. For instance, if
a laser beam is permanently directed along an axis, say the z-axis, we may define
W,,, W, as axially symmetric functions simulating the energy-density profile of
the beam. Then, taking the initial concentrations C,(r, 0), C(r, 0) as z-indepen-

" dent, we treat equations (1) as two-dimensional (Section III).

In Section IV, reserved for the concluding remarks, we suggest how to make
a short step forward by taking D, # D, but assuming that

D, — D, < W (D, + Dy). )

Under this condition, we can show that a perturbation theory with respect to
the small parameter |D, — D, is feasible.

II. FORMAL SOLUTION WITH D, =D, =D

Let j equal 1 or 2 (fixed column index); we are to solve the equations

%Gy _ pv2G, — WGy + WaGys

ot

(10)
@%w. = DV2 Gy + W;,G; — Wy Gy,
with respect to the initial conditions

G(r, 0; ry) = 5;0(r — rp). an

We define the functions
G, = Gy + Gy, (12)
g =Gy — Gy (13)
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so that

I
anma\+@u (14)
1
Qe.uma\.l@v, s)
Then equations (10) are transformed as follows:
oG,
M%Ibﬂ@"o, (16)
0g:
M\N!bﬂw\}vg\s + W) g =Wy — W) G, 17

Independent of the index j, the initial condition for G;is

G{(r,0; ) = 8(r—ry). (18)
Equation (16) gives the solution

C ey 1 (r—nry
Gr t; ) =————exp| — —
A5t 1) (4nDr)" eﬂ; 4Dt g (19)

for ¢ > 0. For the functions g;» we have the initial conditions

§(r,0; ) = (= 1y*'8(r - r) (20)
For fixed j, we define Green’s function Y{r, t; ry) satisfying the equation
oy,
Mlbﬂx.fﬁxle_.:\:vsuo, t>0, 21

and the initial condition
7(r 0; r) = &(r — r,). (22)
Then we obtain the formula
g t; r) = (=1 {y(r, t; i)} +
¢ (23)
’ 3.7 ’
+4h dr %a ry(n e — 0y [Wy(r, t') — Wi(r, t)] G(r,t; n)}.

Thus, the problem has been reduced to solving equation (21) with respect to

oo:nwaoz (22). The direct comparison with relations (2), (3) and (4) yields the
result
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24)

+ Wi(n(2), &Lw.

If this functional integral (the Feynman—Kac) integral) can be calculated
explicitly, the problem may be viewed as solved. Formulae (14), (15) give us the
components G(r, t; r, of Green’s function G, and then, for any initial distribu-
tions C,(r, 0), Cy(r, 0), we can, employing formula (7), calculate instantaneous
concentration profiles C(r, ¢), C,(r, ¢) for £ > 0.

III. DIFUSION OF TWO-LEWEL MOLECULES IN A LASER BEAM

In this Section, we will exemplify the general analysis shown in Section Il and
solve a problem interesting to experimentalists. We consider an ensemble of
molecules (or defects, “clusters”, etc., in a crystalline or another medium) at
some temperature T} before the time instant £, = 0, the ensemble is in ther-
modynamic equilibrium. Let the molecules have two energies: E; and E,,
E, < E,. With a certain probability, each molecule, being in the state X with the
energy E,, may pass (undergoing some stereochemical change) into the state X,
with the energy E,. For simplicity, we assume that the energies E,, E, correspond
to non-degenerated quantum-mechanical states. The corresponding transition
probabilities (per unit time) are W, = W(X, - X,), Wy = W(X,— X,). Thus,
we may interpret the reaction

X, 2 X, (25)

as an isomerization process. If the geometric form of the molecules is roughly
the same in both states X, and X,, we may also assume that their diffusion
coefficients are practically equal. Respectively, we may use equations (1) with
D, =D, D, = Dfor C,, C,. For t <0, C, and C, are constants: we denote them
C.., C,,. We define also the total equilibrium concentration of the molecules:

C,=C,+ C,. (26)
According to the Boltzmann principle, we have the relations:
e P . 1
Ce=Co—pr—— i=1,2; f=—. 27
¢y X

Let us now assume that a laser beam of frequency o= (E, — E,)/f is switched
on at f, = 0 along the z-axis. The radial energy-density profile of the beam is
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given .g a function ¢(x, y) = @(+/(x* + y?). For example, it is possible to use
— as In quantum electronics [4] — a Gaussian profile:

.X.N 2.
0u(r) = 0u(x, y) ~ 9(x, y) = A exp A; dML.v (28)
where 4 > 0 is a dimensionless maximum amplitude.
If E, — E; » k,T, then C,,'> C,.; the molecules in the state X, have a mean

:mnosﬂwanocm lifetime” 7, > 0. With this concept, we may write the transition
rate coefficients in the form

1
W= M o + o(x, »l

1 (29)
Wy = MS + 1+ o(x, y)l,

where
1
PE-E) _

So= = const. (30)

Hro mo_cmwzm Cy, €, do not depend on z; therefore, we write the diffusion-reac-
tion equations as follows:

oC, Amn ONV ht+o C
pudhd —t+—C, - T — =
ot oy T, G-G+ 7,
31)
aC, A% %v foto C. .
—=D|—=+—=]C,+* C - -2
Py e o) & 5 (€ -C) Y
For the functions
C=C+ G, c=C, —C,, 32)
equations (31) pass into the following ones:
ocC A &? ®~v
——D|{—+—)C=0
Py o oy ; (33)
dc A% @Nv 2+ 142 C
——Dl{—+-—}jc+* =t
~ AP . c ﬁ. (34)
" Equation (33) gives the trivial solution
C(x, y, t) = C, = const. (3%5)
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We define
¢, =C,—C, (36)
and
b(x, y, ) = c(x, y, 1) — c.. (37
Noting that
C.=Qfs+De., (38)
wwleW+@o|mvw+Ewu|~IMs?E. (38)

Defining its Green’s function K(x, y, t; x4, ¥o) by the equation

0K & @NV 2

B L+ VKk+Z0(x, ) K=0, >0, 39

o bA@m o) KT o)) =9
K(x, y, 0; xo, yo) = 6(x — x) 8y — ¥o)» (40)

we may write b in the form

N N ~ \ \ \
@@Lﬁvu| Nlm &96 ﬁl b..+| QIN L :&%N@%Tﬁ&éq.
7, Jo T,

(X', ). (41)

For any function ¢(x, y), the Green function (i.e. the kernel of functional (41))
can be expressed as the Feynman—Kac integral:

X, P

o[EOLF0,

Dx(1) Dy(1) exp W — ._. ip

0

K(x, y, t; x4 yo) = %
Xg Yo, 0

42)
+ ¢(x(1), X%ﬁ.

This can be calculated numerically by adopting a Monte-Carlo method. Upon
another occasion, computer programs for numerical calculations of the Feyn-
man—Kac integrals were implemented by Kolibiar [, 6].

IV. CONCLUDING REMARKS

Our aim here was to present a theory in its general formulation. Input
constants of this theory may vary by many orders of magnitude and their
estimation is a problem significant in its own right; for us, D,, D, and , are
phenomenological parameters.
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For our analysis of the diffusion-reaction problem given by equations ), it
was indeed labour-saving to have equalized the diffusion constants D,, D,. Now,
let us assume that D, # D, but |D, — D,| is small enough in comparison with

q $
D = 5 (D) + Dy). (43)
We use the denotation
8=D, - D;; (44)
this parameter may be either positive or negative. We write
C, =CP+Q, C,=CP+ Q,, (45)
where C\, C are “non-perturbed” solutions satisfying the equations ‘
0)
@M =DV2CP — W, + W, CP,
t
46
@&9 0) 0) 0, “o
5 =DV:CP + WP — Wy CY.
t

After inserting expressions (45) into equations (1), we obtain — with respect to
equations (46) — the following nonhomogeneous equations for the functions

0., Oy

0 )
DDV, + W0, - W0, = V(P +0),
T (47
90, _ DV? - Oy co
o Q) — W0, + W0, = lm< (X + Q).
Generally, we write the series
Q=3 &.qn (48)

n=1

where the functions ¢ are &-independent. To calculate the first-order (in" 9)
functions ¢{" (i = 1, 2), we omit Q,, Q, on the right-hand side of equations (47);
to calculate ¢¥, we substitute O, —» &. ¢ on the r.h. side, and so on. At each step
of this iteration procedure, we can employ the common Feynman—Kac integral
in the same way as in Section II.

Similarly, we are able to apply the iteration calculation in case of the laser-

-accelerated reaction analysed in Section I11. L

There is still another point that should be emphasized. The success in reduc-

ing our two-component diffusion-reaction problem to the Feynman—Kac inte-
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gral has derived from the symmetry of the reaction matrix V (cf. definition (8)).
On the other hand, it is easy to image a situation when the components X, X,,
while taking part in reaction (25), may be subject to some trapping as well.
Actually, in the original Kac treatment of equation (3), the function ¥(r, r) was
interpreted as a trapping coefficient (¥ > 0). Now, we may introduce two
trapping coefficients ¥, ¥, selectively (V] ¢ V) for X,, X,, and define a
generalized reaction matrix

H:\:l_uxw I:\m_v Ao
v A W Wyt V) 2

Then the process of thought, as put forward in the present paper, is no more
practicable. Fortunately, however, we can overcome this difficulty by another
path-integral theory. As this new theory does formally look more complicated,
our purport was first to write a preparatory text — the present paper — in
anticipation of the more advanced one [7] where the matrix V is taken with
general trapping coefficients ¥}, V5.
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TEOPHSL MHTEITPAJIOB 110 TPAEKTOPUSAM JJISI PEAKLIMIA, YIIPABJAAEMBIX
IIPX NOMOIIH JA3ZEPHOIO MYYKA, U EE BO3MOXHOE INPUMEHEHUE
B ®OTOJMTOIPA®HUU

B pa6ote Haiineno peuienue ypasuenuit muddy3un ans IBYX KOMIOHCHT, NOABEPraOILUXCs
PCAKIMM M30MeEpH3aNHMA (XMMHUNECKAs PEakilUs NepBoro nopsaka). [pusenen ananus pemenus ¢
TOYKH 3DEHHA NEPCHEKTHBE! JIOKATLHOIO YIPAB/IEHHs XUMHYIECKOH peakuteil IpH TOMOLIH Jasep-
HOro myuka. Komewnnie pesynhraThl MPEACTABIEHB B BHAE (GYHKUHOHANOB C SAPOM, KOTOpPOE
MOXHO BLIHCIHTH NIPH NOMOLUK CTAHAAPTHAIX HHTEIPANIOB 110 TpaekTopusam Pefimana—Kana.
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