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ON UNSTEADY HYDROMAGNETIC TURBULENT
SHEAR FLOW

ROY CHOWDHURY, S. K.." KANCHRAPARA, SANYAL, D. C..? Kalyani

Unsteady hydromagnetic turbulent shear flow of viscous incompressible, electric-
ally conducting fluid between two infinite uniform porous planes in the presence of
an axial and a transverse magnetic field has been studied by the semi-empirical
approach. The expressions for the mean distributions for the velocity and the magnet-
ic field have been obtained for both cases. The solutions obtained for the axial
magnetic field have been shown graphically for turbulent and laminar flows.

I. INTRODUCTION

Pai [1, 2] studied the turbulent shear flow of an incompressible viscous
fluid between parallel planes and through a circular pipe by the semi-empirical
method of Kampe de Ferriet [3]. These theoretical results agree with the
experimental results of Laufer [4] and Nikurdse [5]. The hydromagnetic
turbulent shear flow between two non-permeable parallel planes considered by
Jain [6] is also in close conformity with the experimental results of Murga-
troyd [7). Mehta and Balasubramanyam [8] investigated the steady
hydromagnetic turbulent shear flow through chanels with permeable walls by
the semi empirical method. Sanyal and Roy Chowdhury [9] generalized
this steady problem when the surfaces of the channel are moving with constant
velocities and one of the surfaces is conducting.

An attempt has been made in the present paper to generalize the problem of
Mehta and Belasubramanyam [8], taking into account the case when
the mean flow is unsteady, i.e. the motion is a time-dependent phenomenon in
contrast to earlier works. As in the case of [8], [9], two types of the magnetic field
have been considered: (i) the axial and (ii) the transverse one. The results
obtained here are applicable to all values of Reynold’s number. Due to the
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non-availability of relevant experimental data, assumptions have been made
regarding the numerical values of the constants and all the results have been
calculated by using the Main Computer system and are shown graphically.

II. MAIN EQUATIONS FOR THE HYDROMAGNETIC TURBULENT SHEAR FLOW

We consider the unsteady hydromagnetic turbulent shear flow of an incom-
pressible viscous, electricaly conducting fluid between two uniformly porous
parallel planes at a distance. The axis of a x is in the direction of the flow parallel
to the planes, the y axis is normal to the planes and z axis is transverse to both
x and y. Let the lower plane be y = 0 and the hydromagnetic flow variables are
functions of y alone. The planes of the channel are now y=0,y=a

Neglecting displacement currents, the hydromagnetic equations in SI units
are [8]
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where (i, j) = (1, 2, 3) and (x,, x,, x;) = (x, y, 2), ¢ is the time variable v; = (v,

.&. v,) are velocity components, A, = KH, = (h,, h,, h,), p is the magnetic per-
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meability, £, the magnetic field intensity vector, A, has the dimension of velocity,

o desity, p pressure, v kinematic viscosity, vy = 1/uo magnetic diffusivity and o
is the electrical conductivity.

Let the flow be composed of a mean motion with superimposed random

fluctuations and equations (1) to (4) are satisfied by the instantaneous flow
variables. This may be expressed as

f=r+r )

where 7 and f* denote the mean and fluctuating parts of the flow variables
respectively.
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Substituting (5) into equations (1) to (4) and taking averages we get
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by = (v — {hihp

and { ) denote the average values.

III. FLOW I: AXIALLY ALIGNED MAGNETIC FIELD

As we have considered the mean flow to be unsteady, we assume 7; = {0.(»),
5,(»), 0y e, b, = {h.(y), 0, 0} € and the components a;, b; are functions of yand
Nm:@ there is a uniform external magnetic field A, applied in the direction of the
x-axis. Equation (6) gives

f, = constant = v, (say) (1)
and equation (7) identically. We aso take a; = a; e, b; = b; . Introducing the

non dimensional quantities
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where u* = V(1/0) is the reference velocity. 7 being the shearing stress on the

55



plane y = g and p, is the reference pressure which may be taken as the mean
pressure at £ = 0, 7 = 1. Equations (8) and (9) will then give
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The boundary conditions relevat to our problem are

A;=8;=0, at =01, (16)
V=0, at p=o1, (17)
H=H,, at p=o0,], (18)
AEM=0, at  g=0, p=1. (19)

Intergating equations (13 i iti
1) s q (13) and (14) and using the boundary conditions (16) and

A,=B, =0,
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IV. MEAN VELOCITY DISTRIBUTION FOR TURBULENT SHEAR FLOW

In the presence of turbulence 4;, B; # 0 we may get the solution for the mean
velocity distribution ¥, for the turbulent shear flow compatible with the corres-
ponding laminar flow with the same characteristic velocity. We assume V, has

the form
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It may be noted that the choice of V] in (22) satisfies the boundary condition
V.= 0 at n = 0. Introducing the empirical parameter -

R
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and using the boundary condition ¥, at 7 = 0 we find
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The coefficient of skin friction C; for the turbulent shear flow is given by
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where

The parameters S, and #n are to be determined experimentally.

V. MEAN MAGNETIC FIELD DISTRIBUTION FOR TURBULENT SHEAR FLOW

.> m.ESEm choice for the magnetic field distribution in the turbulent case
satisfying the boundary condition H, = Hye™ at n=0is given by ,
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Introducing the empirical parameter
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The parameter / is to be determined experimentally.

VL. NUMERICAL RESULTS

. As H._._o expertmental results are not available, we assume for numerical
discussion

Ay=2, R* =3, _\H_,QNHN.SHr%HN,:Hu.
%_Hw.mnn.mm,\no.uu Ve=2,t=1,H=1.

We have plotted 50.58: magnetic field distribution for the turbulent shear
flow (H,) and the laminar shear flow (H) in Figure 1, and the mean velocity field
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distribution for the turbulent (¥)) and the laminar (V) shear flow in Figure 2. All
the numerical results have been calculated by the Main Computer
(EC — 1033) system.

It is observed in Fig. I that within 0 < n < [ the representations of H, are
almost the same, while H, decreases with increasing value of 77 up to a certain
stage and then increases again. In Fig.2 V, is increasing with 7 increasing and
again decreasing to its minimum value. The same conclusion can be drawn for
V.. It is zero (minimum) for n = 0 and 1 and attains its highest value for = 0.6.
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VIL. FLOW II. TRANSVERSE MAGNETIC FIELD

In this case we take 4, = {5,(y), 7,(y), 0}, & = {A.(3), h(»),0}€*. The
components a; b; are functions of y, r and assume that there is a uniform
transverse magnetic field 4, normal to the main flow direction. Then equations

(6) and (7) give

V.,=const. = ¥, h =const. =4 (24)
and Reynold’s hydromagnetic equation in the non-dimensional form reduces to
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where R, = ahy is Reynold’s magnetic number characteristic of the Unifory;
Vi PRy
transverse magnetic fied hy. The relevant boundary conditions are assumed tq
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VHOI. MEAN VELOCITY AND MAGNETIC FIELD DISTRIBUTION
FOR TURBULENT SHEAR FLOW
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and the corresponding solutions for the turbulent
the above laminar flow are given by
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shear flow compatible with
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K BOIIPOCY O HEYCT OMYVBOM T HAPOMATHUTHOM TYPEYJIEHTHOM
TEYEHUM C IONOPEYHLIM I'PAAUEHTOM CKOPOCT, n

B @N@O.—.ﬂ Ha OCHOBe NOJYIMNHPHYECKOr O noaxona H3yvyaercs HEYCTOHMHBOE I HIPOMAarH¥THOe
H%Umv\bnﬂ.—. HO€ TeycHHe BSI3KOI, HECOKHMAaeMoi, AIEKTPHYECKH npoBoasieH KHIOKOCTH ¢
nonepeYHbiM rpagueHToOM CKOPDOCTH, KOTOpas ABHKaETCH Mexnay AByMs @anomn-:m!:x OnH-

~ HaXOBbIMH TIOPHCTHIMH ILUIOCKOCTAMH B NPHCYTCTBUM AKCHAJIBHOT'O M nonepevysoro MArBHTHBIX

none. Jins oboux cnywaes TIONIyMCHBI BBIDAXEHHS IS Cpemmux pacnpenenenuii ckopoctu u
MArHMTHOro nons. Pemenus, TIOAYHCHHbIE /UTA AKCUANBHOTO MArHHTHOrO Hons, NpuBeNcHBI B
rpaguyeckoM Buge aus Chy4as TypOyjieHTHOro u JIAMHHADHOTO TeYeHuii.
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