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SIZE EFFECT IN MULTILAYER METALIC FILM
KHATER, F.," SEOUD, A" Tanta

On the cwmmm.o.. the Fuchs — Sondheimer theory, an analysis is given for some
:.m:%oﬁ coefficients of a multilayer metallic film. This film has a large number of
alternating layers of two different metals. Two different relaxation times, describing

thin metallic films. L
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ing of quasiparticles at the interfaces has a strong influence on their transport
properties if the thicknesses of the layers is comparable to their bulk mean free
paths.

In this paper, a procedure is presented for computing some transport coef-
ficients, in a multilayer metallic film, when internal reflections and refractions of
conduction electrons at the interfaces are taken into account. The scattering of
the conduction electrons at the interfaces is rather complex. For simplicity, we
shall only consider the scattering due to some geometrical roughness of these
interfaces. We restrict ourselves to the case of longitudinal transport, when the
external thermodynamical forces are parallel to the film surface. The film is
subjected to an electric field £, and a temperature gradient VT in the x-direction
parallel to the film surface. The theoretical analysis in this paper utilizes two
relaxation times with the energy dependence 7, ~ €®and 7, ~ €’ for the alternat-
ing layers of different materials, respectively. The vaues of a and B depend on
the predominant scattering mechanisms (a, f= —0.5 for lattice scattering, a,
B = 1.5 for ionized impurity scattering and o, 8 = 0 for neutral defects scatter-
ing). In the numerical calculations, we shall only investigate for simplicity the
case when a = g.

II. EXPRESSIONS FOR TRANSPORT COEFFICIENTS
IN A BULK METAL

For a bulk metal subjected to an external electric field £, and a temperature
gradient VT in the x-direction, the current density J. and the heat flux U, are
given, respectively, by the expressions:

J, .uw@vua fod'w. (1)

U, Mvau §§ir € - oo, d. o))

where e is the electronic charge, m the electronic mass, v, the velocity of the
conduction electrons in the x-direction, 4 the Planck’s constant, f the distribu-
tion function of the conduction electrons obtained from the Boltzmann trans-
port equation and f° the equilibrium Fermi-Dirac distribution function of the
electrons:

1

exp{(e — Q)/K,T} +1°
(Here € is the electronic energy, ¢ the chemical potential which is a function of
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temperature and 7 the absolute temperature). The curren

t densi
heat flux U, can be written in the form: ensity J. and the

~@uv
J, = ¢? —_———
koma+mk_A 73x) “)
~®uv
U.=¢eR e
~mx+-~A Tox/) &)

The coefficients R,, R, and R, can be obtained ?.OB the equations for J_ ang

U,. Thus using the basic definiti
o ons of the transport i
results for the bulk metal as follows: port coclicients we mnﬂnro

(i) The bulk electrical conductivity

Op = €’R,. 6
(1) The bulk thermal conductivity (electronic part)
.x 2
Ky=22_ h )
T RT

(iii) The bulk thermoelectric power

mu%A@ ®

(iv) The bulk Peltier coefficients

m,-! AMV ©)

I RESULTS

In the case of a multila

R and R, yer metallic film, we shall calculate the coefficients Ry,

IIL.1. Expressions for Transport Coefficients in a
Multilayer Metallic Films

_ Let us oo:mm.amn. a multilayer metallic film, whose surfa
n_ mqmo.umu 0, with infinite dimensions in the x and y directions, subjected to an
w: Mmmﬂwn M“a £, mﬂa E.Bnonm::,o gradient VT in the x-direction. The multilayer

m, under investigation, consists of a lar iodi
: : ; : 8¢ number of periodical
alternating layers (thin films) of two different metals, Since the v%:oa hw :W
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ccs are parallel to the

multilayer (i.e. the cell) is a doublelayer, our problem in to obtain the longitudi-
nal transport coefficients of a doublelayer metallic film with periodic boundary
conditions (see Figure 1).

The electron distribution function f= f° + g(v, z) obeys the Boltzmann
transport equation, where g(v, z) is the small deviation from equilibrium caused
by the thermodynamic forces, i.e. by ¢, and VT.

e

DD AN,

2

Fig. 1. Schematic diagram of multilayer metallic ~ Fig.2. Schematic illustration of the reflection
film which is composed of alternating layers of (probability P) and refraction (probability Q)
two different metals. scattering of the conduction electrons on the
interfaces between the layers. (For one cell of

the periodic structure).

According to Bezdk and Krempasky [16], the distribution functions
g, &', g and g; (see Figure 2) satisfy the boundary conditions:

a+ @vw WOH c_nv O

8 (02 =0) = Pygy (—v,,,2=0) + Og7 (v, 2

WM.Q&UN = Qv = NvEWNIAI.CNn“N = Qv + QNWAC_H.N = Qv Uy. > C A_.Ov
Wﬂﬁc_nuN = QV = m&qﬁlﬁ_nvN = Qv + Q%WACNM«N = Qv M ﬁOH G_n < o
8 (0,2 =a+b) = Pgf (—vy,z2=a+b) + Qg7 (v, =0) v, <0

where g, gf and g;, g; are the distribution functions of the conduction
electrons with z-components of the positive and negative velocities, respectively.
Here 1, 2 refers, respectively, to the layers whose thicknesses are a, b respective-
ly.

The parameters P, and P, are called the Fuchs specularity parameters; they
characterize the probability that an electron will be specularly reflected when
scattered from the interface. On the other hand, the parameter Q characterizes

4]




not be equal to By, but 9, = 0, =0.

The boundary condijtio i i
et ns, given by equation (10), respect the wo:oim:m

%N.*.ACNNVN = Ov ”NN.TAGNNVN =a+ @v NAOH CNN > O
W_IAC_NuN = Ov ”%._IAC_NuN a+ @v M.OH. c_w < O

Similarly for & and g;.
The Boltzmann equation for the conduction electrons has the form

I

)
GN”IMITM”NC*@'.\IdAmlewmIn“@'. 1
0z 1 Oe e T ox (n
10,
where E, = & + . %\ 1s the external electric field.

Solvi i
o mﬁmﬁ mwao WMM.WMmss ﬁ_nmsmuo: €quations (four €quations, i.e. two for each
: 1 ton electrons with respect to the iti
om:w. M@SE the distribution functions &' g7, g5 and Mw::amq Fonditions, we
€ average current density J and mv : x O
. : verage h i
metallic ilm are given by the Rﬁmmosm“ e heat fux O, for the multilayer

.\kun+u e+ 7). (12)
U= —— (U + 1. (13)
where
Ty = L.vau % doyp,, h Q&Qu +g7). (19)
Iy, = rwmﬁwvu % &y, h Z%@ +g7). (15)
U, = Nﬁﬁv%%ﬁ:hn&ﬁ G +g0). (16)
Uy, = NA%% % &0, % i&%@ ~ &)&F +g5). (17)

After ituti i ;i
substituting for &', g, g and g; in these €quations, using the theorem
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introducing the spherical coordinates (v, @, d) in v-space with v. = vcos O,
averaging over thicknes and integrating over v, @, we obtain the following
expressions for the average current density J, and the average heat flux U, for

the multilayer metalic film:

- 1
Jo= {acpF(K, P, Q) + boy,F(K, P, O} E, —

X

a+b
_ mqsmm_ﬂ W(K, P, @+E %k, P, o)LL | (18)
(=5 )y

0, =~ %%wq (K, P, Q) + was% %K, P, Q)| E. -
a+b A_+kv A_+|mv
3 3
16T

We have taken into consideration that the layers may be of different metals,
so we consider different effective masses m,, m, Fermi velocities Vg, Upy, Telaxa-

tion lengths L,, L, (or bulk relaxation times 7y, T,) and electronic densities n,, n,.

Therefore there is a potential energy step at each interface f value W= W m; X

1 . . ,
x v — m§~ewu. The conduction electrons which pass through the potential step
must obey the law of refraction m,v,/m,v, = sin 0,/sin ©,. The Fermi surface for

each layer is assumed to be spherical.
The funkctions F(X, P, Q), E(K, P, Q), H(K, P, Q) and ¥(K, P, Q) are

defined as follows:

F(K, P, Q)=1 | dx@ -0 - D —coa-m) o)
I 0
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EK, P,Q)=1__2

H(K, P, @u? +wlav1~: +a) (!

4

= ﬁ.@: - vi = ll.h Q.X_A.R_ — HU.I@IC — \Avbs_ x

K
X (X, ~Co - By, _,

&SNSHAIW&INAIE%
3 K, o

Je,

x (1 — 4)) fmh dxy, — x3) 21 _ B) D!

Here NA_ and .NN are the reduced thicknesse
3%@.02.5_3 1e. K, = a/L, and K, = b/L,.
Itis Interesting to see how the functions F(k, p 0), g

> 4y E

. = ,

Bk P,0)=1-30=F-co)

8K,
EK P, gy=1-30=8 ~cg)
8K, )
HK, P, 0) = 1 +2) 0+ a0 -2, - cg)
3 0K, .

—r=—_a=C 9

(K, P, Q) = A_ +~Imv U+ -B - g
3 2K,

Here we have used the notations:

X, =1 — P, ~BP, + B(P,P, — ).
X,=1-p, - AP, + AR, ~ Q7).
D=1-(4R,+BR) + AB(P,P, - 0.

2K, o % =2~ B DX, — g - 4y, o

K, A QR_C:C: = kwvﬁ = \Avbt_?w\_ -

(22)

doxy(x, ~ x3)(1 — B)D-'(x, — C'0 x

2, (X =CTQ(1 - ), _, (23)

(X, P, 0), (K, P, 0)
K, and K, (asymptotic

24)

25)

(26)

@7)

(28)
(29)
(30)

The quantities 4, B and C are

\AHQGAI 4 vnowalllnlivnoquI.mV. 31
Tlole L,cos 6, X
b K
mnoval b vnoxvﬂfllvnaxUAlxle. (32)
Llvo.lF L,cos 6, X
=Lt (33)
Limyvyr

We have introduced the angle @, such that v, = v,cos @, i = 1, 2. Comparing
equations (4), (18) and (5), (19) we find that:

Q qw_ @ QWM
u |m~nﬁ+ ~ E(K, P, Q). (34)
Ry a+b ¢ it m,v a+be <

Ry=— Mo gk, p,0)+ %% gk p o) (3s)
a+@A_+|mva a+@A~+%vm

3
a b KnTEK, P, 0). 36)

KnTE(K, P, Q) +
at+b " a+b

kw\ ==

From the relations for Ry, Rirand Ry (f, B represent film and bulk, respesctive-
ly), we obtain the following transport coefficients for the case of the multilayer

metallic film:

(1) Electrical conductivity

b
0 =—2— G, F(K, P, Q) + onE(K, P, Q). G7)
a+b a+b
(2) Thermal conductivity (electronic part)
b
K= —2— KuE(X, P, Q) + KnFyK, P, Q). (38)
a+ b a+bd

(3) Thermoelectric power

SnH(K, P, Q\A 1+ Nlav 4 b CSn¥Y(K, P, @\A_ + Nlmv
3 na 3

Se= 5
F(K, P, Q) + 2 CE(K, P, Q)

na
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(4) Peltier coefficient

M, (K, P, @\A 1+ Nlav +2 e wk b, Q\A 1+ Mi&
- 3 na 3
RK, P, 0) + ™2 cr p g

na

IIL.2 Numerical Results

For numerical analysis, we shall consider a simple model where the potential
energy step at interfaces, is very small, and can be neglected, i.e. 6 G,
Therefore the conduction electrons at the interfaces can be assumed to be totally
transmitted, i.e. both parameters B, and P, are equal to zero and the parameter

For this model the functions £(x, p, Q). B(K, P, Q), ¥(K, P, 0) and %(k.
P, Q) are defined as follows, where X; =X, = x,

3 1

KK, P, Q)= T3k ) XG =) - 9a - B —O0 -4 @4
SEAN
B(K, P, Q)= 1~lwm dx(x — x*)(1 — 4)(1 ~ B0 - CN(1 - 4B (42)
2 V0
WK, P, @ué +wmv|§a+ i dx(x — X)(1 = A)(1 L% :A_ +
1 0

mlav I — 4B)~" :+N®.ﬁ XA = B — ey
+N:+& ( )™+ 7 ), A= xY A1 - By - o)

2a

WK, P, Q) = A_ +m%v - N:M s% dx(x ~ X')(1 - 4)(1 - B) x
2 0

(s,

.‘, dx(l — x*B(1 - AP(1 — chHa - AB)™?. (43)

+4 w&i dx(1 — x) B(1 — 421 — CY(1 - 4By —
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IE?E — AU = B - O - 4B (44)
2b 0

ivi i her-
The dependences of the electrical conductivity ratio ooy and the t

i B i 1 @\Q »‘OH N\_\N\N = ~Ou Mo Nmﬂa
K |~ —O - O 5,0.05 QOHQ\\ONKUC—N.MOQ ﬂwm—‘.—m a OOEH::..OH. H’O Hﬂwﬁzm are MTOES mn
i 3l Ly Mandy Ma

Figures (3—S5). These dependences were calculated for the three scattering
i —S5).
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Fig. 3. Variation in oy/ay with b/a for K, = 10, 1, 0.5, 0.05 and (i) L,/L, = 10, (i) L,/L,
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mechanisms: scattering of the conduction electrons by lattice phonons, ionizeq
impurities and neutral defects, i.e. g — B=-05, a= B=15and g= B=0,
respectively. The curves approach their i

a) When b/a < 1, i.c. the thicknesses of the layers labelled b
small, g/0, and S/Sg tend to unity for all values of K, L
Therefore the film behaves as a single metal (j.e. bulk).

1 10 100 1000
(i)

P,_\-rwn 10

080

Fig. 4. Variation in S¢S with bla for K, = |0, 1, 0.5, 0.05, L,/L,
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fogt a0 o1 i 10 100 1000
1"

=10 and (i) a= g= o, (ij)

a= f=15 (In both Figures, the straight line corresponds to the values ¢ — B=-05).

100

096

092

088

084

1114
__:___ 1 __.::_ 1 ______L 1 ~._:___ J

11 1) ___L i .
pwoo.os 001 01 1 10 100 1000

@

o,B=-05

098 -

082

074 |-

BRI Lo il

[
070 Lol Lol
0.001 001 (¥ . 1 10 100 1000
(ii)
Fig.5. Variation in S./S,, with b/a for K, =10, 1, 0.5, 0.05, L/L, = 10 and (i) nln mou%, (i)
.n = B = 1.5 (In both Figures, the straight line corresponds to the values o = = —0.5).
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0

S,/Ss tend to values dependin i i

g on the solutions of the functions KK, P, Q)
KK, P, Q) (K, P, Q) and H(K, P, 0). How rity for ali

, 0), s P , P, Q). ever S,/S

values of K, and L\/L, when DNH = %o.m o sl iy for ai
mnv When bja > | , L.e. the thicknesses of the layers labelled by number 2 are very
arge. o,/a,, and S//Sg, tend to L,/L, and unit » respectively, for all values of K,

Li/L, and q, B (except when ¢ = B =0.5, since S//Sp equals unity in this case).

IV. CONCLUSION

By H.ro above analysis we have obtained general, as well ag asymptotic
€xpressions for the transport coefficients of a multilayer metallic film taking into
account that the film jg subjected to an external n_.o,oS.m mmE E. and a parallel
temperature gradient VT, The analysis has been carried out mz.sm a general
energy dependence of the relaxation time in the 2& layers of the film The
a.omczm show that for a multilayer metalljc film the transport coefficients QNEEH
size nm,mmmm“ except for the thermoelectric power and the Peltier coeflicient if the
n:&oﬁ_nmi scattering of the conduction electrons js by _.m:moo phonons. This
has a simple physica] explanation; namely,ifg= g= _ 0.5, we have a oommSE
UE._A mean free path independent of energy. The analysis has shown that the
ratio of the film to bujk electronic thermal conductivity in metals behaves in the

Same manner as the analogical ratio for the electrical conductivity. They are

aoco.% on E.n type of the ao::.:ﬁ.:m scattering.

1:5:%,. 1t should be pointed out that the analysis can alsa be applied to
Eoﬂm_-mosa.ozac.oﬁg or moz:.ooza:QonnS_.oo:a:QQ B:E._m,v&_. EEM 2.:_.0:
may occur in microelectronije applications. In case of moE_.nozacoazm films
however, the theory will become Somewhat more complicated because of Hrm
usual presence of some surface change at the interfaces, the bendin of the band
and the possibility of strong charge fluctuations. “ ¢ e
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MACIITABEHBIE 3®®EKTBHI B MHOT OCJIOMHBIX
METAJUIMITECKMUX TUIEHKAX

B pabore Ha ochore npunnuna ®yxca—3onareiimepa npusoaurcs TEOPETHYECKUH aHamu3
KO3PPHLUHEHTOB NEPEHOCA B MHOrOCIONHLIX MCTanH4eCcKux nuterkax. Mcnonsiyemas Tonkas
TUICHKA COCTOHT #3 GOMNBIIOrO YHCHA HepeAYIOWMXCH Coes ABYX pa3MYHBIX METAJLIOB.
lpeanonaraercs, uro nsa pazmuinsix BPEMEHH peakcauu Ans 06heMHOTO paccesHus ek~
TPOHOB IPOBONMMOCTH ABMOTCA BYHKLHAMH auepruu. Kpome napamerpa otpaxenns Qyx-
ca P, BBefen ewe napamerp Q, KOTOPBI COOTBETCTRYET J0JIM MEKTPOHOB NPOBOAUMOCTH,
OTPAMCHHLIX Ha rpaHuuax pasfena cnoes. Haimensr uucnennse 3HAYEHUS INCKTPONPOBOA-
HOCTU H k03dduuMeHTa TEPMOINEKTPOABMKYILER CHITBL [IA CITYYast NOMHOrO OPOXOXACHHS
SNIEKTPOHOB NMPOBONMMOCTH Yepe3 rpaHuiy pasacia MEXAY CHOAMH METajla.
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