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MODEL OF THE QUASI-ONE-DIMENSIONAL
ELECTRON-ION COULOMB SYSTEM
I. GENERAL FORMULATION

JANETKA, 1.," Bratislava
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L. INTRODUCTION

WA.M:J\ mnuma ago it Smm.nnnomamom that the behaviour of quasi-one-dimen-
qu (QID) solids must a_m,n.n dramatically from that of their three-dimension-
o %%MMMQ%&G (1. ,;M Interest in the variety of exciting properties of this
§ has increased with the development of i i
. . materials whose micro-
m_oon_o structures consist oﬁ,. well-separated, parallel, metallic chains along which
electrons propagate essentially in one dimension.
o MMQ@ are two different ﬁ.oonomom_ methods of the mathematical description
e 5 moﬁ%u\maam. In one, the mﬂm.n::m Hamiltonian is the Fréhlich Hamiltonian
» 3] This model usually describes a system of conduction electrons forced to

move along parallel chains without a chance of hopping from chain to chain

interacting with phonons. The intrachain electron-electron interaction is not

.nxﬂE_M_:w oo.sz.nw& in this model. The tota] electron-phonon Hamiltonian is
in n”v 19& ntuitively. Hrog 18 no rigorous procedure based on the exact
analysis of the electron-ion system of the metal for deriving this Hamiltonian
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This model is often used for describing the structural transition caused by the
electron-phonon interaction.

In the other method, only the electron system is considered, since the par-
ticular features of the one-dimensional (1D) electron gas themselves explain
many properties of the Q1D conductors. Even if only the electron system is
considered, there are still two different approaches. For a description of systems
in which the conductivity along the chains is almost metallic, a 1D Fermi gas
model with two-body interactions can be used [4]. The elementary interaction
processes which are permitted in the 1D Fermi gas model consist of the excita-
tions of a particle-hole pair of small momentum and large momentum. The
strictly 1D Fermi model has been extended to a set of coupled chains. There are
two possible mechanisms of the interchain interaction: the interchain scattering
of electrons [4—7] and direct hopping (tunelling) of electrons from chain to
chain [4, 8, 9]. This extended model provides a more realistic image of behaviour
of Q1D conductors. In the other approach, which is more suitable for noncon-
ducting systems, a Hubbard Hamiltonian with strong intra-atomic correlation
is used [10, 11]. These two approaches are essentially the limiting cases of a
general model of interacting electrons written in different representations
(momentum or site representation).

Very recently, models trying to unify both methods of the description have
appeared. These models describe a Q1D gas of electrons not only interacting
mutually through two-body interaction but with phonons as as well. However,
in all these models the strengths of the electron-electron, electron- ion and
ion-ion intrachain interactions are either parametrised by constants [12—14] or
replaced by the 3D Fourier transforms of the corresponding Coulomb poten-
tials {15, 16]. The reason for this is that in a strictly 1D system the Fourier
transform of the bare Coulomb potential has a logarithmic singularity. This
singularity causes serious difficulties in trying to employ a 1D electron ion
Coulomb Hamiltonian. To avoid the logarithmic singularity of the 1D Fourier
transform of the bare Coulomb potential we assume that we have a Q1D system
which consists of the electrons and ions interacting via the bare Coulomb
interaction. The quasi-one-dimensionality means that the electrons and ions are
confined to a tube which is formed by a surrounding homogeneous insulating
medium. The radius of the tube is supposed to be equal to the effective trans-
verse radius of the ions.

In this paper we present the derivation of the Hamiltonian for a QID
electron-ion system interacting via the bare Coulomb interaction. The paper is
organized as follows: the precise statement of the model is made in Sect. II,
where the Hamiltonian is obtained. In Sect. I1{ the Fourier transform of the
interaction potential in the present Q1 Coulomb system is discussed, Sect. IV
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1s devoted to the derivation of the Q1D Fourier transform of Poisson‘s equation
and in Sect. V we calculate the unrenormalized phonon frequencies.

. THE HAMILTONIAN

As mentioned the present Q1D system consists of the electrons and ions
confined to a tube of the length L and the radius r. The total Hamiltonian H of
any electron-ion system consists of three main parts:

H=H+H,+H, (1)

where H, H,, H,; are the ion, electron and electron-ion parts of the total
Hamiltonian, respectively,

Let us begin the investigation of the QID electron-ion system with the
simplification of the jon part of the Hamiltonian. This has the general form:

N.

i wn — N; N;
H = L wz,ZzZ 2
,_M_ 2M ?M_ WW_ Za Zp @)

where M, Z,, P, are the mass, position and momentum of the a-th ion, N, is the
number of the ions in the system. The mutual interaction between the a-th and
the f-th ion is denoted by w(z, Zy).

We suppose that each ion of the system possesses a rotational symmetry with
a rotational axis identical with the axis of the tube, the electrons and ions are
confined to. We further suppose that every ion has the shape of an oblate
ellipsoid of evolution whose longer axis is equal to the radius of the tube.
Because of this ions can move only along the tube. The longitudinal radius of
the ions has to be less than half of the interionic spacing in order that the jons
cannot overlap. As a matter of fact, we shall later neglect the longitudinal size
of the ions.

The bare ion-ion Coulomb interaction is:

dvdr-
W(Z, Z,) = % % w(Ry R) =2 3)
with the intergrand:
*2,2
w(R, R) = —2"¢€ @
4re|R, — Ry

where R, = (R, Z_ + z), Ry = (R}, Zg+ 2'), V is the volume of an ion, Z* is
the effective valence (we suppose that Z* ~ ¢ - 2), e is the elementary charge
and € is the dielectric constant of the surrounding organic medium (typical
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values of the relative dielectric constant lie in the region €, ~ N:l.uv. The integra-
tions are performed over the volume of the a-th and Eo.\rr ion.
The function w(R,, Rg) can be expanded in the following form [17, 18]:

*2p2 i -— 2 —a!
27 S Kylgl R, — R)e™e It )

R) =
w(Re Ry 2rnel %0

where g = 27n/L and # is an integer, L is the 3:%8&:& size of the system,
K.(x) is the modified Bessel function of the second kind oﬁu the order n and
argument x. The term with ¢ = 0 in (5) is omitted coowcmn the ions are supposed
to be immersed in a uniform background of a negative Q.Snmn.

If we neglect the longitudinal size of the ions, the expression (3) gets the form:

W(Zp Z) =~ Y wig)e" %% ©)
N\e%c
where ., P
_Z*%e o L L 7
wig) = £ % H Kl B, — A& (

and r is the size of the transverse radius of the ions. The ::mm.nmmosm in (7) are
performed inside the circle of the radius r. If we use polar coordinates and Graf's
addition theorem for Ky(x) {17, 18], we obtain:

w(g) = ;lk.:,ax : RR'Kq(lql R) Io(lql R") AR +
wer 0 0

+ % RR’Ii(l9l R) Ko(lg| R') &Lw ®)

where /,(x) is the modified Bessel function of the first kind of the order n and
argument x. The integration in (8) can easily be performed and we get:

(@) = 27 yqp) ©
e
where
X

Hence, the ion part of the total Hamiltonian is:

N,

i ﬁvw 1 N, N; 102, - 2 1
H = o w(g)e (1)
' QM“ 2M 2L QM_ \M_ AMQ

B#a
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Now, we shall try to simplify the electron part of the Hamiltonian. Ag th

electrons are confined to a tube (i.e., they are free to move along the axis of Eo
tube but their motion in the transverse direction is confined to the interior M
the circle), the electron part of the Hamiltonian can be expressed in the mozm‘

H=H,+H, +H
where [ L ee 12)
N, p? v
H,=Y Zi
: \M_ 2m (13)
o N, hlPu.r L
el J.Ml_ o T U@ (14)
1 Y N 22 1 N N 2
N*&n == M = INI ig(z—z)
25 W_ dmelr — rf NPM_ P m 2e 1ol = RDETT. 15)
i) 3

Hﬂw m is 9.0 Qoo:.o.: mass, p; and p; are the momenta of the J-th electron in
e ongitudinal and in the transverse directions, respectively ry=(r, z)is the

. . : ’ FARE )
nomao,u of the j-th electron, N, is the number of the electrons in the m%mﬁo\E. The
potential U(r, ) ensures that the electrons cannot escape from the tube, because

0 for |r|<r
o for |r|>r (16)

U(r) = W

,_,r.o term with ¢ = 0 in (15) is again omitted as the electrons are immersed in a
uniform background of a positive charge. As known, the wave eigenfunctions

in polar coordinates r 1» @ and the energy eigenvalues of the Hamiltonian H,,
are: ‘

.\»Qs_aw 1) eite for r, <y
Vinlrs, @) = § (w20, (ko) ’ a7
0 for ry >r
mwxﬂm . :
m .= Ln
b 2m (18)

where J/(x) is the Bessel function of the order / and argument x, k, , is related

to the n-th zero of the Bessel function of the order /, i.c., J(k r)=0and k4 is
the Planck constant. e

To rewrite So.o_om:oz.-n_no:,o: part of the Hamiltonian (equation (15)) in
the second quantization, it is necessary to calculate the following integral:
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[Jdr, &y, (o, @) wE, (7, 0) Kylgllr, — r] x
X Ym (s 0V W, . (r, 9). (19)

In trying to evaluate such integrals some complications arise. To avoid them we
shall always consider that all the electrons of the system are at the lowest energy
level.

The difference between two energy levels of an electron confined to the
interior of the circle of the radius r can be estimated by 6E ~ h%/(2mr?). We
assume that the temperature T'is so low that the temperature fluctuation cannot
cause transitions of the electrons from the lowest energy level to a higher one,
i.e. ksT < OE (kgis the Boltzmann constant). Therefore, we assume that only the
ground state subband related to the transverse motion is occupied by electrons.
We also replace the ground state electron probability density by a constant [19]:

1
— for r, <r

vei(re, @) v (r, @) =\ m? 0)
0 for r, >r

Now integrals in (19) can be easily evaluated. In accordance with the above
assumptions the only integral different from zero is that with /, = /, = L=1=0
and n = n, = n, = n, = 1 and its value is 4y(q| r).

Then the electron part of the total Hamiltonian can be rewritten in the form

zn 2 — ZQ Zu %
H=YL2, % 3 vygde= @1
i=12m 2Li<1 i1 470
i#j
where
NNN
v(g) =—v(qlr). (22)
ne

The last part of the total Hamiltonian to be simplified is the electron ion part:

N, N,

Hy=Y Y Uz, 1) 23)

a=1j=1

where U(Z,, r) specifies the interaction between the o-th ion and the j-th
electron and can be expressed as:

U@Z, 1) = [u(R, ealw 24)
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with the integrand:
Z*e? )
4ne|R) — r (25)

The integration in (24) is performed over the body of the a-th ion. We assume
that the interaction of the electron with the ion is not affected by the motion of

u(R, r)= —

to the transverse motion), we get:

1 %N -
Ta= u(g)e 9
L <= i< 50
where
NN*NN
u(g) = — r(qlr). @
e

Again, we omit the term with ¢ = 0 because we suppose that the interaction of
each electron with a uniform positive charge distribution is subtracted from the
electron-ion interaction. We have already susbtracted the self-energy of a unj-
form negative charge distribution from the electron-electron interaction and the
self-energy of a uniform positive charge distribution from the ion-ion interac-
tion. The sum of these three corrections adds to zero so that the total Hamil-
tonian is unchanged. The absence of the term with g = 0 in the total Hamil-
tonian is the consequence of the electrical neutrality of the present electron-ion
system.

From the condition of the electrical neutrality of the system we can obtain
the expression connecting the Fermi wave vector with the Debye wave vector.
As the whole charge of the electrically neutral system is equal to zero, the
€quation Z*N, = N, is valid. It is obvious that N, = L/g and N, = 2Lk/n, where

a is the interionic spacing and k; is the Fermi wave vector. Combining the
previous equations we obtain:

VA 4
2a

Therefore, the parameter Z*/2 expresses the degree of band filling because mjais
the 1D Debye wave vector. As a matter of fact, the values of k;and are g known
from experiments and €quation (28) can be used to calculate the parameter Z*.

The condition of the electrical neutrality is often represented by a relation
among v(g), u(q) and w(g) [20], namely:
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b= (28)

BLAC/ Y 9)

lim =
1% w(q) v(q)
ial 1 lomb poten-
As in the present model the o_no:os-moqw mogrzc_ﬂ% M_M HMV:MM Hm.ww M: <mm~ ten
i i the 1
i i ip (29) is not only valid in
tial, the relationship (

/B
OMB SYSTEM
[IIl. THE INTERACTION POTENTIAL IN THE Q1D COUL

The function
—\N - N_A\AV N_A.Nv AWOV

7(x) = 2

tial
hich gives the Q1D Fourier transform of the Coulomb poten
w
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Hence, the Q1D Fourier trans . o e ekl gaied .
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mmvnomww_mwww_.nﬂ. transform of the bare Coulomb 5838:0” ﬂ.ﬁnnmomoa.
.oﬂﬂﬁ consequence of the long-range nature of .Em MUAWMF.VE
° Fo the limit of large x, the following expansion holds:
1 1 (33)

1D Fourier
Therefore, in the limit ¢ » co we get the expected form of the Q

erefore, . ;

transform of the Coulomb potential [21]:

S T ! i _ Aw _v
QAQV N N A

i i form of the
The ﬂuS:.OmmmOD in the round brackets of OQCNQ.OS Aw v is the known
iD Fourier transform of the Coulomb ﬁOﬁODa—m—.
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Fig. 2. The plot of the function ¢(y) as de-
fined by equation (36) h

Fig. 1. The plot of the function y(x) as defined
by equation (30),

If i
we make the inverse 1D Fourier transform of v(q), we obtain:

Vi) =—& 7
) dne _N_QA‘V (39

where V' (z) denotes the 1D Fourier transform of v(g) and

o) < 3 [7
P0) =—
- h 7(x)cos (xy)dx. 36)
I .
t can easily be shown that for small y the function @(y) behaves as -
16 X
oU)=—y+ ..
so that i .
4e?

V)=

3r’er 8

The
trons mﬁvmm_““wn ﬂ@ measures the Coulomb interaction between two elec-
(47eb) and is o<w~WwMM meﬂ E_m. parameter is expressed in form ¥ (0) = ¢?/
the of A ed experimental values of the ionizati
of b Mwnmw MH“_N m_w_:.m b =18 x10""m for metallic Emmzn_w“ ﬂmmnmmwmm”w
Sl el o o_ tain a rough estimate of the transverse size of the Q1D
r=3.06 x 10-°m ﬂmamd 8;%95&. The above value of b yields
I T alue of r togeth i RPN
(@a=34x 10" gives the ratio r/q — %b. er with the interionic %mo..Em
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If we realize that
2 m 2 2k
“\@n.hl_‘% aDaD,
4ne @+ — ABke (mr?)?
we can derive the expansion of the function @(y) in the limit y — co. Taking the
expansion of the expression (39) we obtain:

lr, — r)? dr d 1

(39

The function @(y) is shown in Fig. 2. We note that ¢(y) rapidly approaches 1 if
the argument y proceeds to infinity.

IV. THE Q1D FOURIER TRANSFORM OF POISSON’S EQUATION

Screening is one of the most important concepts in the treatment of systems
containing electric charges. Charges, which are able, will move in response to an
electric field (caused, e.g., by an external potential or by an impurity charge
distribution). This charge motion will stabilize into a new distribution of charge
around the electric field. The new induced charge distribution affords the
screening potential which cancels the original electric field at large distances.
The relation between the screening potential and the induced change in the
charge distribution is set by Poisson’s equation.

In this section we derive the Q1D Fourier transform of Poisson’s equation.
The purpose of this treatment is to facilitate the study of the screening effect of
the electron-electron and electron-ion interactions on the ion-ion interaction, to
which the forth coming paper will be devoted.

Poisson’s equation states: _

Su|m%3 1)

AV,

5

where V(r) is the screening potential and &o(r) is the induced change in the
electron density which can be written in cylindrical coordinates r,, ¢, z as

do(ry, @, 2) = M Ont @ WET L, O W (T, ) (42)

nn

where g, .. (2) is the density matrix. The summation in (42) is performed over
two sets of quantum numbers (/,n) and (I,n") which specify the state of the
unperturbed electron system.
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As in Sect. II we consider the case that
transverse motion of the electr.
probability density by a consta

c case oz_w the ground state related to the

ns 1s occupied and replace the oro

nt value. Then we have: Bround state
do(z)

%@A\Fu su Nv = aw

for r, <r
(43)
v 0 for r, > ¢
Where d0(z) is the induced chan
ge of the 1D el i
If we employ that,the modifi ol
.Nnao& and argument lgllr, —
ing differential equation [23]:

d B i .
e nmmo._ function of the second kind of the
‘| is Green’s function G (r., 1, q) for the follow-

1 d d
— ,‘ ——
rar tar G(ry, r, q) - Q,NQS, r,q) = -8 —r) (44)

where §(x) i i i
(x) is the Dirac delta function of argument x, and if we further carry out

~
xS,s” MM@@ % Kylalir, — ryh s 45)
\q

where V(r,, q) mn.a 60(q) are the 1D Fourier transform of V(r
. i s\T 1>

r.

isn?? PP
A 4)— = v(q) Ge(q) (46)

where again v(g) = 2e?y(lq| r)/(me).

Equation (46), which is the 1D i
, E . , .
of the same fore wr e i the Wb i ournier transform of Poisson’s equation, is

omc_aoxoov:rm::oub_u.
of the Coulomb potential e%/(eg?) i i Tt O o
by p €°/(eq’) is replaced by its Q1D cunterpart 2e*y(lql r)/

V. 3
THE UNRENORMALIZED PHONON DISPERSION RELATION

In this section we further rearr
obtain the unrenormalized
electron-ion Coulomb a sy
tion given in [24].

32

ange the ion part of the total Hamilton;

. miltonian and
phonon frequencies of the present model of the Q1D
stem. The treatment is largely based on the presenta-

Let the equilibrium position of the a-th ion be denoted by Z, = @, where a
is the interionic spacing. As the ions vibrate their actual position Z, differs from
the equilibrium position by the shift 6Z,:Z, = Z, + 8Z,. Clearly, there is
nothing which distinguishes the motion of the a-th ion from that of its neigh-

“bours. We can therefore write:

_ I@El *Z 0 47
oZ, M»Uﬁgz..v_ho @7

where Q(k) are the N, new coordinates, which describe the normal modes of
osscillation of the ions about their equilibrium position and & is the wave vector
from the first Brillouin zone defined by —7/a < k < n/a.

If the displacement of the ions from their equilibrium position is small, we
can expand the ion-ion part of the Hamiltonian H;in a Taylor series. Retaining
up to the quadratic terms in 6Z, we have:

N; N, ;
H,=E, + W Y Y Y q'w(q)(8Z,86Zs— 6Z.6Z) @07 (48)
a=1 f=1 ¢

where

N, N .
E=2- Y 3 T w@e )
2L o= WMMA%:

is the equilibrium position ion-ion interaction energy. Replacing 6Z, according
to equation (47) and summing twice over the equilibrium position of the ions in
equation (48) we obtain:

Hy= Ey+ w WCACIICEID (50)
where Q7 (k) is given by
QW) = Q) + Y, 19k + K) — QK] 1)
K, 20

where 22%(q) = ¢*w(g)/(aM) and K, is the 30638_ lattice wave vector defined
by K, = 2an/a, where n is an integer. It can easily be shown using the behaviour
of the function y(x) at large values of the argument x (equation (33)) that the

infinite series in (51) converges.
The kinetic part of the ion Hamiltonian can be rearranged with the aid of the

following transformation:

1/2 .
P,= M A>Z|~v P(k)e"** (2

where P(k) is the momentum conjugate to Q(k).
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In terms of the new

coordina i . :
foti: tes the ion part of the Hamiltonian takes the

_ 1
H; = Ey+ 5 ,MHEI»:UQ& + 82,0k Q(—k) Q (k). (53)

.,Z:w Hamiltonian (53) describes a harmonic-oscillat
Independent normal modes. Therefore,
> 24

renormalized phonon frequency of the 01
the wave vector .

or field decomposed into
(k) can be identified with the un-
D electron-ion Coulomb system for

o
=

Qo (k)

14

Fig. 3. The unrenormalized phonon frequenc
. of :..m Q1D electron-ion Coulomb system as :..w
o ) h ; function of the wave vector (curve A is related to
ka/nt r=05aandcurve Bto  — 0.9a).

The u i
nrenormalized phonon frequency as the function of the wave vector is

shown in Fig. 3 for two different values of the parameter r. The phonon frequen-

. .
1es are plotted relative to (Z*m _\NNS\«\\AE:v, which is the value of the 3p

MWO%E&_N@Q phonon frequency multiplied by 3'” and taken at 7/a (i.e., at th

i ebye wave <oo~oa.. We have chosen Z* — 5/3, a=34 x _ol.s.m: N:M

nmw mnmo. = 2.6 (where ¢, is the dielectric constant of vacuum). The curve _wcn:-
y A1s related to r = 0.54 and that labelled by Bto r = 0.94. The numerical

values of the parameters Z* g4 ¢
platinum comr NOW. » € are taken from [25] and correspond to a

ow“mﬂoﬁnnmnw However, there is only a longitudinal mode of w\m@nmno: in the
MA ono: mo :o_ of the Qrc. system, as the ions move only in one dimension.
. over, the unrenormalized phonon frequency vanishes in the limit k — 0, as

different from zero at k = 0. The reason for this difference is the “weakness” of
the singularity of the Q1D Fourier transform of the Coulomb potentialatk = 0,
which is only logarithmic.

VI. CONCLUSION

The Q1D system, which consists of electrons confined to a cylindrical wire
and interacting via the Coulomb interaction, was introduced by Lee and
Spector [19]. We have included the ions into the model and have derived
the form of the ion-ion and electron-ion matrices. As the electron-ion potential
has been assumed to be the pure Coulomb potential, the interaction matrices
obey the same relation as in the 3D model with the pure Coulomb potential.

The most common models of 1D systems, the Frohlich model [2, 3] and the
electron gas model [4], involve only one intrachain interaction, either the elec-
tron-phonon or the electron-electron interaction. In contrast with these models,
the Hamiltonian of the present model involves both interactions. Moreover, the
strengths of the interactions as well as unrenormalized phonon frequencies are
not parametrised by constants but they are derived from first principles.
Therefore, they propertly express the long-range nature of the Coulomb interac-
tion. In most papers, only short-range interactions are considered, though there
are some papers [15, 16, 26] which also treat the long-range nature of the
electron-electron interaction.

The established parameters of the model have their clear physical meaning.
However, a somewhat unusual parameter of the present model is probably the
transverse size of the Q1D system. In the original model [19], this parameter was
established as the radius of the cylindrical wire the electrons are confined to. In
the present model it is rather the effective transverse radius of the ions, which
in turn determines the transverse size of the space the electrons can move in.

The reason for including the ions into the model is that we want to study the
structural transition in the Q1D system. The structural transition in low-dimen-
sional systems originates from an anomaly in the electronic dielectric function
at the weave vector 2k, which in turn gives rise to an anomaly in the phonon
spectrum.

Our forthcoming paper will deal with the study of the influence of the
electrons on the phonon dispersion relation in the Q1D electron-ion system
described by the Hamiltonian which is derived in this paper.
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MOJAEID KBA3HO JHOMEPHOM IJIEKTPOH—HOHHO)
KYJIOHOBCKOI}f CUCTEMBI
H. OBHAS POPMYJIMPOBKA

. Bcneacreue Toro
OCJIECTBHEM HANIbHOACHCTBYIOLIErO XapakTepa KyJIOHOBCKOrO NOTERUMANA wwu .H“ o eo“
. ACCXOAUMOCTb HMeET norapudgmudeckuii xapakTep, :nnnﬁnzom?:nowm:: o o
won i T€ TOXE
:o:ow PABHACTCH HYJIIO KOTAA BOJNHOBLIH BEKTOD CTpeMHTCR BHYMO. B pa6o

HOHAMA OT nonepey-
PacCMOTpHBAETCH 3aBHCHMOCTD Eﬁnomﬁmucww:ﬁ:— ev\vvn KYJIOHOBCKOTO MOTEHII

or pa CHCTEMBIL €C B! CHO NU»QSOhEOZOvEOQ EROQUNHOEN:SQ &wﬁg YPaBHCHHSA
pa ‘M| hg bIBC
HOTO IMC .

POH-HOHHOTO H 3JIEK POH-3. P Ji{ e
whv—“—:—hﬂw.ﬁﬂﬂ~ ‘OH-HOHHOTIO CKT H-3JIEKTPOHHOT O B32UMO ACHCTBHA Ha YaCTOTHI QOHOHOB

Oyner paccmatpusarbes B CHeAyoLIeH cTaThe.
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