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ONE-DIMENSIONAL STEADY FLOWS
IN RAIL PLASMA ACCELERATORS

KULHANEK, P.,Y, UZEL, M.," MALOCH, J.." Praha

A simple procedure to determine the space distribution of density, velocity,
temperature and other quantities in a current layer moving in the rail plasma ace-
elerator is proposed in this paper. The movement at a constant velocity and the
experimental-based knowledge of the current density distribution within the cluster
are assumed.

L. INTRODUCTION

A gradual burning of the conductive plasma layer and its displacement
toward the end of the accelerator appears in the plasma accelerator under
atmospheric pressure [1]. In this way a plasma cluster or a shock wave arises,
which leaves behind a partially ionized moving gas. In this study we will
consider the plasma cluster with a constant velocity movement between two
plane parallel electrodes. The constant movement arises either under some
experimental conditions [1] or the actual time development can be approximated
with the time net ¢, ..., 7,, in which case all functions are supposed to be
constant in the time intervals Ar = L—t_;i=2,...,N.

1

IL. THE CONSERVATION LAWS IN FLOWING PLASMA

Let us consider the mass, momentum and energy conservation laws of the
moving plasma and associated electromagnetic field if the heat flow and the
viscosity are neglected:
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where g is the density, vthe velocity, u the internal energy density, T* the electric
part of the Maxwell tensor and T the magnetic part of the Maxwell tensor,
respectively, e.g.
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The electric and the magnetic field fulfil the Maxwell equations
rotE= — o8 (35)
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Having introduced a coordinate system moving with the current layer (see
Fig. 1) the terms with the time derivatives in the system (1)—(3), (5}—(6) are
zero. The orientation of the individual vectors in the rail plasma accelerator can
be seen in Fig. 1.

V= (v(x,0.0)
B~ (0,0-Bix)
E= (0.E(x).0)
7= (0,jx10)

Fig. 1. The coordinate system moving with the current layer

After applying the Gauss theorem to the system of egs. (1)—(3), we have
from eqgs. (5)}—(6)
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This system of equations (the Rankine-Hugoniot conditions) together with
Ohm’s law yields a continuous solution or a shock wave solution for the
quantities g, v, T [2] describing the plasma. The experimental knowledge of the
function j(x) will be considered here instead of Ohm’s law. We will also assume
a partially ionized plasma with the rate of ionization a, which can be derived
from Saha’s equation of equilibrium ionization in first approximation [3]:
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where [, is the ionization potential. In discussing these equations we use the
relations
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Next we introduce non-dimensional variables according to the scheme

0=0/o U= v/v, a=a
T = kT/mp; B = B\Numews  E = ElNow! (17
.\iu\(tc\mvocw,\ X .X\Nv

where a is the rate of ionization, Qo Vo, Ty, B, are the values of density, <o_oQQ,

temperature and magnetic field ahead of the current layer, / is the width of the
current layer, respectively. The system of eqs. (7)—(12) becomes
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where we have denoted
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b is the distance between the electrodes and U is the voltage applied on the
electrodes, respectively. Next we eliminate the quantities £ and o from the
system of Egs. (18)~—(23) and after simple algebraic manipulations we obtain
the system
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which will serve as a scheme for the numerical solutions of the particular
quantities.

aew, Ty = (28)

II. THE RESULTS OF NUMERICAL SOLUTIONS

Knowing the function j(x), we can derive the B(x)dependence from (27). The
velocity distribution v(x) can be determined from the quadratic eq. (25). As the
determinant of this equaticn takes the form D — [0 — y(1 + @ 8Ty
(¥ — 1) > 0, we always have a real solution. Using some iterative method the
T'(x) dependence can be obtaincd from eq. (26) and the a(x) dependence can be
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directly computed from €q. (28). Let us remark that the system of egs. (18)
—(23) does not depend on the width of the current layer /, which takes place
only in the transformation (17).

The numerical scheme was tested on the current density dependences

2
Jj(x) H\...T ~— Cos Am\mvw . (29)
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Fig.2. The current density distributions used in the numerical test:
1 — symmetric layer
2 — symmetric “double” layer
3 — non-symmetric layer with =02
4 — non-symmetric layer with =038
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Fig. 3. Magnetic field distribution for current densities from Fig. 1.
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atmospheric pressure, the voltage applied on the electrodes of the accelerator

2
Jj(x) =j, “H 1 — cos AE& (30) was U = 12000V and the distance of the electrodes b — 2cm. The remaining
{ v input values are in Tab. [.
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The relation (29) describes a symmetric current layer, (30) is a symmetric current
»-double* layer and (31) represents a non-symmetric current layer, where Ee(0,
1) —see Fig. 2. The responding magnetic fields are plotted in Fig. 3, the velocity
distributions in Fig. 4, the temperatures in Fig. 5 and the rates of ionization in
Fig. 6. The calculations were performed for the nitrogen plasma under the @
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Fig. 6. Rate of ionization distributions for current densities from Fig. 1.

Table 1
Values of quantities ahead of the current layer
Y [ & B,
o4l _ 1.3 x 10°ms™! 12000K Tkgm™} 0
0 %] 04 06 08 0 %
Fig. 4. Velocity field distributions for current densities from Fig, 1. IV. CONCLUSION
The above mentioned procedure can serve as a simple numerical estimate of
. density, velocity, temperature, rate of ionization and other quantity distribu-
tions in the cluster, assuming we know the Space current density distributions,
on b Ahead of and behind the current layer we find the areas of weakly ionized
gas, which together with the current layer form the plasma cluster. The only
010 | 4 remaining problem is the estimate of the temperature 7; ahead of the current
sl layer, the other values Yo, O and B, are well known from experiments.
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Fig. 5. Temperature field distributions for current densities from Fig. 1. Received April 8th, 1987
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OJAHOMEPHLIE YCTAHOBUBHIMECSH NOTOKHU B IJIASMEHHBIX
YCKOPUTENAX PEJBCOTPOHHOI'O THUIIA

KJIaCTepax H3BECTHBI.
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