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APPLICATION OF THE MODIFIED WU FUNCTION
TO THE CALCULATION OF SOME
ATOMIC PROPERTIES

GLOSSMAN, D.,') DONNAMARIA, C.') CASTRO, A.') FERNANDEZ, M.,)), La Plata

The analytical Wu function is improved within the context of Eo. Thomas—Fer-
mi—Amaldi—Dirac model. The modified Wu function is then applied to n&o&ﬁ.a
some neutral unovo_.:om, such as interaction energies for noble gas atoms and atomic
jonization energies. Comparisons with other theoretical nnm.zzm and available experi-
mental data are taken into account. General trends are pointed out and advantages
of the present analytical procedure are stressed.

1. INTRODUCTION

The treatment of interatomic potentials is the bottleneck of quantum Baorm-
nical calculations of atomic and molecular systems. Up to now, in atomic
collision theory and its applications to stopping, range damage, sputtering, €tc.,
mostly simple “universal” potentials have been applied [1, 2]. On a first mm-
proximation they depend on the separation R d.agmo: En atoms. Bohr’s
screened [3] coulomb potential is a good representation of Ew interaction, QA.@»
at very small distances (R < 0.2a,, az = 5.29 nm). In separations near the equili-
brium position the empirically fitted potentials of the _Lmﬁwal._.onnm type E are
applicable. Comparatively little is known as regards .Sn 588.2_0? U .Q? in the
intermediate range (R = 0.8a; — 7.0 a) of separations, ﬁm:_oc_mlw important
in the study of phenomena involving close atomic encounters, very high pressure
or temperature. This lack of information is usually compensated by onE_.&—,EB
potentials based on a reasonable physical model [5]. One of them is that
proposed by Thomas [6] and Fermi [7. Of course, such a woroao omw
only describe the general trends, i.e. gradual changes 1n Ew Em.mnzcao.m:_
shape depending on the atomic number Z, vE not every Ea_s.mcm_ wiggle
due to the specific shell structure of the radius of the mﬂﬁwéfm:on cell in
solid — state target atoms [1]. In a recent paper [5] we have introduced some
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corrections into the interaction energy, connected with exchange and self-energy
effects, which are neglected in the original Thomas—Fermi (TF) theory. The
unrealistic long-range behaviour [2] of the TF screening function can be impro-
ved somewhat by the modifications suggested by Lenz and Jensen [8, 9].
The proposed Thomas—Fermi—Amaldi—Dirac (TFAD) screening function
introduces the exchange energy correction [10] and the self-interaction modifica-
tion as suggested by Amaldi {11]. These corrections are made evident in the
screening function because of the presence of two parameters. Another opti-
mum Z parameter arises in order to improve the total electronic energy [12, 13},
since the introduction of the correction terms worsens the energy results [14]. We
believe these first results on the utilization of these functionals with the opti-
mization of Z are suggestive and interesting, because they ofter a very easy
alternative of improving the statistical computations. Nevertheless, before
reaching a definitive conclusion about them, we consider it necessary to perform
several tests in other independent trial functions and to calculate different
physical quantities making the corresponding comparisons with the available
experimental data. Then it is our purpose to work along these lines. Bearing this
in mind, we have extended in the present paper the examination of this particular
procedure to the calculation of interatomic homonuclear potentials, diamagne-
tic susceptibilities and the total ionization energies for rare gas atoms with
another simple density function proposed by Wu ([15]. The aim of our
present communication was to find the appropriate dependence on Z and
demonstrating the validity of some atomic properties ranging from the lightest
to the heaviest atoms within the neutral atom set.

II. THEORETICAL FOUNDATIONS
INTERATOMIC POTENTIALS

Homonuclear binary potentials lend themselves most readily to a theoretical
description in terms of the free electron statistical model [16]. Apart from the
feasible theoretical analysis the homonuclear case has also its practical advan-
tages: the whole field of radiation damage and sputtering is governed by low
energy binary collisions between identical atoms. And the lower part of the
former ‘‘universal” potential needs improvements most urgently: deviations up
to an order of magnitude are quite common (notice for example, the difference
between the TF and the Moliere potential in Fig. 2, Ref. 1). The most simple
potential has the following form

1- NM

U(R) = mchwleﬁkv, )

where the screening @(x) is one and the same function for all Z,. Z, combina-
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tions, e.g. a Thomas—Fermi [6, 7], a Moliere [2] or a Lenz—lJensen [7,9]
function. The Z dependence enters here, only through the so-called ““screening
length @', in the case of the Firsov theory {17],

a = 0.8853 QN\ANﬂ\N + Nw\uvu\u @
a, = Bohr’s radius,

the variable x = R/a’, is then used as argument of PD(x).
We restrict ourselves to study the homonuclear case:

Z,=2Z,=2. A3)

We assume that the electrical potential of an atom is described in the form
{17, 18}:

V= .Wm P(x) @

where @(x)isa suitable screening function, not necessarily the TF one. If we do
relate it to the TF theory, it follows that [18]:

Tl = o )
and we adopt the scaling of r with AL
x=rla; a=0.8853a,Z" ",
In the framework of the TF theory the electron density g is related to @ by:

_ Z(@)"

o ; (6)

dma

This g is equivalent to that determined from a variational principle by mini-
mizing the total energy [18] with respect to the variation of the parameters
included in the trial density function.

Atomic Total Energy

The atomic total energy in the TF model and in those modified by corrections
of self-interaction (FA) and exchange (D) effects are given by [5], [13], [19]:

EA0) = Ex(0) + E.(0) + E (0 @)
(N-1)

ErelQ) = Ex(0) + makbv‘*.‘ﬂlmﬂmﬁg ®3)
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m.:nbﬂbv = NWNAQV + mamﬂﬁv +- mnﬂ.m.ﬂbv + mmkl_AQV A@V
Errap(0) = Erea(0) + E..(0)- (10)

The first term, E;(0), represents the kinetic energy of the electron gas, the
second, E,(0), the interaction energy of the electron gas with the atomic
nucleus, and the third, E,(0), the self energy resulting from the interaction of
the electron gas. The FA (Fermi—Amaldi) correction appears as a simple factor
(N — 1)/N, energy results an optimum Z value is determined from the condition
{31, [12], {20}

mﬂm.AN%v = mmﬁ. Awuv

Eyr shows the self-consistent-field (SCF) energy value for the non-relativistic
total electronic energy [21].

The Screening Function

The screening Wu function [15] is a modified trial solution of Robert’s
function [22]:

Dy, = (1 +mx'? + nx)* e~ (x) 3 (12)

where m, n are variational parameters, which have minimized the theory fun-
ctionals (7)—(10). The infinite electron distribution of the naive TF model
causes U(R) to decay too slowly as the distance increases. This shortcoming can
be avoided by choosing a trial electron density function with an adequate
dependence on the distance, such as @,,. Introducing @y, into Eq. (6), we
obtain

L

(1 + mx'? 4 nx)? (x)" e 3 (13)

Q"
. 4na

Replacing o, Eq.(13), into the normalization condition [18]:
fodv=N, (14)
N being the number of electrons, then (Appendix I):
7+ ag?® + bt + ¢, =0. (15)

With ¢ from Eq. (13), the energy functionals become (in the following we will
use atomic units):

Ex(o) = NL. ol dv. (16)
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From Appendix (11):

2

E(m,n) = 1.3554 277 T.éwmw +0.7028% + 0.71270 = +
m m

m
n n n’
+ o.mm@mul.\ + 0.28901 —+ 0.07432 JQ amn
m m n
m=aﬁbv = _. ﬁ\ZQQCw Ammv

¥, being the electron-nucleus interaction, which in an atom with nuclear charge
Z is (— Z/r). From Appendix III,

2
E(min) = —2.25902 27| 0.96296 - + 096296 + 0.79012 2 +
" m m’ n’

Eu
+ o.wwﬁwﬁg (19)

EZ(@) = —(1/)[ Ve edv (20)
the electron energy V7f(g) is determined from the Poisson equation:

ch.m\:.v
= = A4gnpr. 21
dr @
Integrating it twice (Appendix IV):
5 a0 n’ w n n’
E™(m,n) = —1.1295Z77%) 0.5296 — + 29796 —; + 33712%—+ 8.292— +
m m m m'
1 26 26n _64n’  720n° g )
mt 2Tm 21m’ 81m® 2187w’
3(3)"?
4r

2
+ 7.5068 ™ + 3.8996 = + 0.9884
mt mb

mel.A@v = -

fodv. (23)

From Appendix V:

2
E,.(m,n) = —0.71763 Z%" T.&SP +09023 2 + 1.1646 " +
. SN E& Sa
n n*
+ 04614 +0.3461 l% (24)
Em §_c
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Diamagnetic Susceptibility

The atomic diamagnetic susceptibility, S, is given by [16]

NG 05
6 m

where N, is the Avogadro number and ¢ the light velocity, while {r*y is given
by

(r*y =fordv. (26)
Considering (26) and (13)

10880  76160n  627200n  19712007°
P = 1.56766 N_;&.—M 4 [o160n == w Q7)
129m " T29m | 2187m" | 6561 m"

ap = 0.5291771 x 10~*cm, then:
S = —2.82855 x 10'°¢r*> cm’/mol. (28)

Ionization Energy

The calculation of the energy necessary to remove all electrons of an atom can
be easily achieved by making use of the following expression [16]:

—\u
JE = %A%mv o (0) 2" sg

where @(x) satisfies the TF equation (5). In our TF-like model with the Wu
function:

@'(0) = (2n — m?), then, for IE:
1/3
IE, = mAxNIv @n, — ) 2
y = TF, TFA, TFD or TFAD formalism, and Z = Z or Z,,.

111. RESULTS

First, we have completely minimized the energy functionals (7)—(10), (16)—
—{(24) associated with the appropriate TF—Wu function, equation (13), corres-
ponding to neutral atoms. Thus, we have obtained optimum values for the (i, n)
parameters, according to the minimum energy criterion for each particular
TF-like formulation, (Table 1). Then, for each (m, n)- pair we have computed
some atomic properties, such as total energies and atomic diamagnetic suscep-
tibilities.
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Table 1

Optimum (m, n) parameters for the modified Wu-function

Atom z Mypa —R1Ea Mrep —Hrrp MyEAD —Rrpap
Ne 10 1.0192 0.12407 1.0065 0.13395 0.9897 0.14618
Ar 18 1.0244 0.11995 1.0151 0.12727 1.0073 0.13324
Xe 36 1.0276 0.11738 1.0211 0.12257 1.0177 0.12525
Kr 54 1.0286 0.11657 1.0234 0.12075 1.0213 0.12242
Rn 86 1.0293 0.11601 1.0254 0.11915 1.0241 0.12019
mpp = 1.0305, #ige = —0.1 1503
Table 2
Optimum (m, n, Z,,) parameters for the modified Wu-function
Atom Zy Mgy —Drpy Dlrgp —Nyrp Myrsp —Orrap
Ne 9.0019- 1.0178 0.12509 1.0045 0.13528 0.9850 0.14944
Ar 16.4769 1.0240 0.12019 1.0140 0.12804 1.0054 0.13460
Xe 33.4649 1.0274 0.11746 1.0206 0.12289 1.0269 0.12579
Kr 50.9301 1.0285 0.11657 1.0231 0.12091 1.0209 0.12265
Rn 81.3494 1.0292 0.11601 1.0252 0.11923 1.0238 0.12035

mrp = 1.0305, ngp = —0.11503

TF = Thomas—Fermi

TED = Thomas—Fermi—Dirac

TFA = Thomas—~Fermi—Amaldi

TFAD = Thomas— Fermi—Amaldi—Dirac

We have seen in previous papers [5], {12] that when an optimum Z value,
equation (11), is introduced within the energy functionals (7)—(10), resuits of
energy improve remarkably. With Z,, values, new m(Z,,), (Z,,) are obtained
from the variational procedure (Table 2). In Table 3 we present total electronic
energies. As previously stated [5], additional Z,, constraint, equation (11), forces
in a certain way a better agreement between TF and SCF electronic energy, SO
it is necessary to consider another independent property to judge the merits of
the procedure. Atomic diamagnetic susceptibility, equation (28), seems to be a
convenient alternative, because it depends on (P, equation (27), Table 4. We
calculate S(Z,,) and S(Z) for neutral atoms for which other theoretical and
experimental data exist [24, 25], Table 5. In Table 6 we have listed the corres-
ponding ionization energies as given by formula (30). In Table 7 the comparison
with other available data is made [15], {26], [27]. Finally, we have calculated the
interatomic potentials between rare gas atoms in the Firsov—TFAD(Z,,)
approximation. .
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Table 3

Total electronic energies (a.u.) for the modified Wu function

—E2)

TFAD - E(Z)

- E(Z")

- E(Z)

TFD

—E(Z)

—E(Z)

TFA

—E(Z)

TF

—E(Z")

Atom

182.4391
692.6514

3397.009

143.9815

566.1444

2871.255

175.8158
678.1890

3360.613

138.2203
553.2866

2838.239

170.8816
661.9424

3299.632

134.2754
539.6386

2785.035

164.2924
647.5204

3263.298

128.5471
526.8175

2752055

Ne

Ar

Xe

8658.663
25426.49

7563.273
22352.77

8596.212
25310.39

7505.507
22244.96

8467.337
25011.12

7839.740
21974.15

8404.975

7332.138
21866.44

Kr

24895.11

Rn

Table 4

¢ results for the modified Wu function (P> . 107 %em?)

TFD

2

(ry

JFA

<2

TF

<y

Atom

4.80
5.98
7.63
8.77
10.28

4.61
5.80
7.45
8.61
10.09

491
6.04
7.66
8.79
10.29

473
5.86
7.48
8.63
10.61

499
6.10
7.72
8.84
10.34

4.81
593
7.54
8.68

10.15

5.05
6.14
7.74
8.86
10.35

488
597
7.56
8.69

10.16

Ne

Ar

Xe

Kr

Rn

Z optimum

zZ =
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Table 5
Diamagnetic susceptibilities (—S. 10~ *cm®/mol) for the modified Wu function
-8(Z) 3¢ —=S(2D) ~8(Z) =52 —S(Z) wo —S@)  =S@Z) 1o =S2)
Atom —SSCF T Pexp.
Ne 5.77 6.7 13.80 14.29 13.61 14.11 13.39 13.89 13.03 13.58
Ar 17.42 19.6 16.88 17.38 16.77 17.27 16.54 17.08 16.40 16.92
Xe 26.75 28.8 21.90 21.90 21.31 21.83 21.15 21.67 21.06 21.59
Kr 42.69 439 24.58 25.07 24.59 25.02 24.40 24.87 24.34 24.82
Rn 55.72 — 28.74 29.27 28.71 29.23 28.59 29.11 28.55 29.07
Table 6
Ionization energies (a.u.) for the modified Wu function
IE(Z) ¢ 1E(Z) 1E(ZY) 1ea 1E(D) 1E(Z) 1o 1E(Z) IKZ) 1rap_TE(Z)
Atom Eur
Ne 129.1 105.4 134.7 104.9 134.2 104.4 133.6 103.6 132.6
Ar 529.4 432.1 531.1 431.1 530.0 429.5 528.1 428.1 526.6
Xe 2786 2257 1676 2254 2674 2249 2668 2246 2664
Kr 7424 6013 6893 6008 6900 5997 6877 5993 6871
Rn 23523 17934 20418 17924 20410 17899 20382 17891 20373
Z' = Z optimum
Table 7

Comparison of ionization energies (atomic energies)

m(Z) 1eap_—1MZ)

Atom Epur 1E, % D, 1E, % D, IE, %p, T IE, % D,
C 6 37.88 39.14 23 44.47 17.4 41.76 102 09591  0.16695 39.70 48
Ne 10 129.1 128.9 0.2 1464  —13.4 137.5 65 09897  0.14618 132.6 2.7
Ar 18 529.4 508.1 —40 5722 90 5421 24 10073 0.13324 526.6 ~0.6
Ni 28 1519 1924 —62 1618 65 1520 0.1  1.0147  0.12758 1480 26
Kr 36 2786 2561 —81 2909 44 2732 ~19 10177 012525 2663 —44
Xe 54 7424 6595 —112 7492 09 7036 ~53  1.0213 012242 6870 -15
Hf 72 14977 12905 —13.8 14699 —2.1 13767 81  1.0231  0.12099 13477 ~10.0
Hg 80 19431 16501 —15.1 18745 —3.5 17604 —94 10237 012051 17207 ~11.0
Rn 86 23253 19535 —160 22191 —4.6 20840 ~10.4  1.0241  0.12019 20373 ~12.0

o, D = Percent difference from column 3
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The comparison of results in Table 3 shows the existence of a poor agreement
between statistical and SCF energy data. In addition, we can see that the
introduction of the different corrections, considered here, worsens the TF results
even more, as it was pointed out by Goodisman [14]. When an effective Z
is introduced within the energy functionals (16)—(24), and the new (m,n),,
parameters are employed, energy results improve greatly. In addition, the not-
able contractions, becomes noticeable in Table 4. The Z optimization produces
the same effect of decreasing (r*). As regards statistical values of S, there are
no marked differences among them, but |S(Zop)| < |S(Z), (Table 5). It is im-
portant to point out that in judging the parallelism between theoretical and
experimental susceptibilities, the experimental data are not the resuits of the true
measurements of particular atoms, but they are determined by measurements of
compounds and the use of somewhat indirect considerations {24]. In Table 6, we
can see that the best ionization energy results, [E, are those corresponding to the
TFAD(Z) formalism, so we have used these values in Table 7. Column 4 presents
the experimental values for Z > 18, while for Z < 28 the theoretical ones of
Fraga et al. [28] are shown. By [E, i=1-—3, we denote other available
jonization energy data, obtained with the same statistical formula (30), but by
means of other screening functions due to Csavinszky [26], IE,, Kesar-
wani and Varshni [27], IE,, and Wu [15}, JE;. With the subscript 4 we refer to
the modified Wu function equation (13). The latter allows us to extend the range
of the Wu function to the light Z elements. The best Z medium values are those
for I1E,.

Our results for the He—He, Ne—Ne, Ar—Ar, Xe—Xe, Kr—Kr and
Rn—Rn interatomic potentials are compared in Figures 1—6, respectively, with
the best theoretical and empirical ones [5], [29—31]. The “empirical’” data are
obtained from “‘semiempirical potentials”. These empirical atomic interactions
are in most cases based on a simple analytical expression, which contains one
or more parameters adjusted to an experimental situation [2]. In all cases F,
curves represent the Csavinszky results, F, curves show the Kesarwani and the
Varshni values, the F; curves are those corresponding to the Wu and the F, ones
and the related to the TFAD(Z,,)—Wu function, @,. In the Firsov treatment we
have only used the TFAD(Z,,) values in order to unify working criteria, as we
did in a previous paper [5]. We must point out that in using Firsov’s formulation
there is no need to perform an explicit two-centre calculation. The successive
TF-like modifications are not basically different, while the Z optimization
introduces the real improvement as regards the Wu potentials {1 5]. The Fcurves
give the repulsive part of the “‘empirical’ potentials [29], [30], while the F, ones
show the theoretical results from SCF calculations [31, 32]. It can be seen from
Fig. 1—2 for He—He and Ne—Ne that the small R agreement between SCF and
the “empirical” tesults is excellent. As regards theoretical results, Gilbert
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Fig. 3. Repulsive interaction potential for the Ar  Fig. 4. Repulsive interaction potential for the Xe
—Ar system. —Xe system.

and Wah! [31] have calculated the potential energy curves for these gases
using single configuration — wave-functions constructed from a molecular
orbital. The “empirical” results are obtained with the Morse-spline-van der
Waal — potential {29]. In Firsov’s formulation, our F, potentials give in both
cases the best results. For R < 2, F, to F, are almost the same (represented by
dotted lines); this feature is common to all the rare gases. For Ar—Aur, Fig. 3,
and Xe—Xe, Fig. 4, we have used empirical parameters, for F; from a previous
paper [5] as listed by Barker [30a, 30b]. For Ar—Ar, Fig. 3, the empirical
results are in reasonable accordance with the theoretical ones given by Gil-
bert and Wahl [31]. As regards Firsov’s results the Wu ones, F;, seem to
be the best (see the SCF values). There is a little divergence for R > 5, but in this
region it is a feature of the SCF data (see Fig. 1). For Kr—Ku, Fig. 4 and
Xe—Xe, Fig. 5, the SCF calculations have been carried out by Wadt {32].
In both cases there is a noticeable discrepancy between the SCF and the
empirical potentials. The available evidence [26] indicates that the latter poten-
tials are inadequate to describe the high-energy repulsion region. It can be
noticed from Figs. 4—S5 that the Kesarwani and the Varshni results are in good
agreement with the theoretical ones. From the trend of SCF calculations it
would be evident that for Rn—Rn, Fig. 6, the repulsive potential may lie above
F,. So, in general, for intermediate values of intermolecular separations (R =
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Fig. 5. Repulsive interaction potential for the Kr  Fig. 6. Repulsive interaction potential for the Rn
—Kr system. —Rn system.

= 2a, — 4a,) the empirical and the SCF curves are very nearly straight lines in
a logarithmic scale. In smaller separations there is a rapid deviatien from this
behaviour, the energy varying as (1/R). Thisis a familiar Bohr type dependence
on distance which occurs because of the dominance of the nuclear-nuclear
interaction [33]. At a larger-distance there is a tendency for the energy to become
negative. The reliability of “empirical” potentials is restricted to the interval of
separation, in which the corresponding measurements were made. With respect
to distances greater than R = 4a,, the energy curves are extrapolated ones.

IV. CONCLUSIONS

Concluding we have found, as regards interatomic potentials, that the modi-
fied Wu function provides a more suitable approximation for the screening
function than Csavinszky’s, for light elements. The original Wu function is the
best for medium Z elements, while Kesarwani’s results are the best for high
atomic number elements. Such a statistical scheme can only describe general
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trends depending on the atomic number Z, but not every individual feature that
is due to the specific shell structure.

Our modified Wu function is also appropriate to describe the ionization
energy for light and medium atomic number elements.

In both cases we have introduced that TFAD self-interaction correction and
exchange effects through the presence of only three parameters (in @) instead of
the awkward @ and @ calculations. This treatment is a complement to the
treatments of Wu, Kesarwani and Varshni. The main advantage of the
present method seems to be in that it can easily be extended to any other
element, while the other approaches such as the SCF and the empirical calcula-
tions are likely to involve a greater computational effort.
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V. APPENDICES
Appendix I

From the normalization condition (14) and from the expression of o(®),
equation (6):
Z{ @ x'?dx =N 8}
for a neutral atom N = Z and then
@ x'dx =1 1.2)
by using the relation (12)
[+ mx'? + nxpPe " dx = 1

if
xP =y x=y, dx=2ydy (1.3)
and using the following relation (34):
(d+e) = Mo AMV *Fak (1.4)
%oék.x:axni\ni_, (L.5)
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for (1.2) we obtain:

Nﬁﬁmozu T 800 n* 5 184n . 184 ;H 1 @©6)
2187m°  243m’ 81w’ 243 ’
It can be written as:
w4+ ap’ + b+ ¢, =0, 17
where
a, = 129600 m?/80640; b, = 89424 m*/80640
o = (29808 m® — 19683 m*)/80640. (1.8)

It is easy to show that equation (I.8) has only one real root and two imaginary
ones for any real value of m. The real root is then:

n=[—(g/2) + H")'? + [—(q/2) — H"]'® — (a,/3)

with
q = co — (agho/3) + (2a/27),
p =by —(a)/3), 1.9)
H = (¢¥/4) + (@*[27).
Appendix 11
For the kinetic energy
K,z % ® P
Efo) = —=— 1| (1+mx'?+nxye ™ dx 1.1
(@) A o ( ) (IL1)

a = 0.8853Z7'7; K, = (3/10) 37y
with the variable change (1.3):

Eo) = NQ__, ( + my + mp?’e™dy aL2)
o

2C, = 1.35541 777
with (I1.4) and (I.5) we obtain

2
E,(m,n) = 1.35541 2" T.qomom L 1070208 + 071270 % +
v m m’ m
3 4 S
+0.55665 7= + 0.29901 = + o.o,ssl;;. (11.3)
54 Eo =~:
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+ BH% OIE,«:N
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E.(0) =

2 [ 12
IW% (@ e dx (LIL1)
a Jo X

with (1.3)

2 oo
E.(0) = — .Nnm.h (1 + my + e ™dy (111.2)

by using (1.4) and (1.5)

2

E, (m,n) = —2.25902 2" Tb%&h +0.96296 - +0.79012 +
m m

m
Bu
+0.32922 ll@ ; (I11.3)
n
Appendix IV
E™M(@) = —(1/2) | Ve ede (IV.1)
from the Poisson equation
d*(r VI¥)/dr* = 4rpr (IV.2)

and from the following boundary conditions:
roow,x—00,y—s0and rVlf-> -2 (IV.3)

by integrating the Poisson equation it is possible to obtain VIF, then

ee *

6 5 4

ETF(m,n) = —1.1295 27" T%ﬁf. +2.9796— + 5.372— +
m m m'

3

3 2
75068 43,8996 + 09884 — 25 _ 21
10 Ew SQ 4

4+ 8.292—
m mt 2Tm 27w’

B 64n* 720n° H_
8tm® 2187,

Appendix V

For the exchange energy
-39

NwmknxAQV = &,Nﬂ:@

f o dv (V.I)
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as in the former cases

@ 13 0
Eal®) = —3| == Nui »d
' 367 s V-2)

with (1.3):

E, (@) = —0.71763 Nmm.ﬁ (I +my+mP)ye*dy. (V.3)
X .

With (1.4) and (L.5) it is possible to obtain
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(1]
2

3]
4
{51

(6]
7
{8]
0l
(10
(11
{12

{13]

{14]
{15}
{16]
[17]
[18]

{191

(20]
{21]

E,..(m,n) = —0.71763 Z°? 0.4s12-L +0.9023 2% + _.;&R +
sn E& gm
+ 046147 n'
A ) + 0.3461 — (V.4)
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ITPUMEHEHUE ZOh=6=5510w>m—=O—N evﬁ,:ﬁ:\—: BY AJIS BOIYMCIAEHWA
HEKOTOPBIX XAPAKTEPUCTHK ATOMOB

B pabote B pamkax MOACIH Tomaca—®PepMu—Amasan-—/Aupaxa NpeToxkeHa monnduka-
1% aHanuTHYeckoil Pynrumy By, koTopas 3aTeM TIPUMEHSETCS JUTA PACYETa HEKOTOPBLIX XapakTe-
PHCTHK aTOMOB, TAKHX KaK IHCPIUH B32HMO/ICHCTBUA JUIS ATOMOB HHEPTHBIX [230B ¥ ATOMHBIE
sneprun Monmsauuu. TIpusosutcs CpaBHEHNE C JPYTHMH TEODETHIECKUMH pe3ynbTaTaMH ¥ J0-
CTYIHBIMH IKCTICPHMEHTATIEHBIMH JAHHLIMH. OTMeuaroTes obIHe YePThl ¥ NOAYEPKHBAIOTCA NIpe-
HMYILLECTBA TIPEUIOKEHHOTO AHAMTHYECKOTO METOHA.
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