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A PROCEDURE FOR SYSTEMATIC IMPROVEMENTS
OF VARIATIONAL METHOD CALCULATIONS
OF GROUND EXCITED STATES

FTACNIK, J.,') PISUT, J.,') PRESNAJDER, P.?) Bratislava

A method is proposed for systematic improvements of variational estimates of
energies and wave functions of Stationary states in quantum mechanics and field
theories. The mean value of the time derivative of any observable should vanish in a
true stationary state. The method starts with some trial state and modifies it so that
this condition is approximatively satisfied for a selected set of observables. The set can
consist of subsequent time derivatives of a particular physical quantity. The state
vector obtained in this case corresponds to an approximatively time independent
mean value of this quantity. We present a few illustrative examples including the
Bardeen—Cooper—Schrieffer ansatz for the ground state of a superconductor, which
follows naturally from this approach.

Two approaches are proposed based on differential equations for a motion of the
state vector along the steepest descent to the stationary state. They are both unbiased
in the sense that they do not require a preliminary selection of a particular set of
“relevant™ operators.

The former maximizes locally the decrement of ¢ Y1 H|¥) and is equivalent to a
differential form of the t-expansion used recently by Horn and Weinstein and is
suitable for a search of the ground state. The latter maximizes locally the decrement
of (I H|¥) — (| H|¥)? and is suitable for a search of excited stationary states,

I. INTRODUCTION

In numerous problems of physics, as, e.g. in studying the properties of
hadrons, one has to use non-perturbative methods in order to determine the
energies and state vectors of stationary states. The variational method is a rather
simple and useful procedure but it is usually based on an educated guess of the
form of the state vector. In this paper we shall present a method which helps in
guessing the form of the state vector to be used in variational method calcula-
tions and leads to systematic improvements of the estimates of energies and state
vectors of stationary states, ,
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Suppose that we have a trial state | ¥,>, obtained by a guess or by a “prel;-
minary” minimization, which does not obey the condition (1). We now wish to
find a unitary operator {/ such that the state ¥ =U|w> obeys Eq. (1). The
operator U is, of course, not unambiguously determined but one of the solutions
can be found easily. We write U = exp (ia4) and determine the value of the

parameter a by minimizing the expectation value of the Hamiltonian. This leads
to the condition

d d ; .
ﬂ\\ & W —tad alad N
a’QA [H|¥) a’aAﬁLm He™' |¥, =0 2
This implies
Hle™[H, Ale |,y — HIH, A1) <0, €)

The state vector I¥"> with the value of a determined form Eq (2) satisfies also
the condition =1

%AEA_%\VMZ.%‘_E&:.«Jno “

which means that the time derivative of the expectation value of A vanishes in
the state [9") .

The connection between the vanishing of the time derivative of ¢ ViA|¥>
the minimum of {¥(a) H| ¥'(a)) indicates that in order to improve the varia-
tional estimates it is useful to look for states with vanishing time derivatives of
expectation values of particular operators.

w%&é =AU ANE =0, S BIYy — i o, B o, .
)

It will also be shown that such a state I¥) is an optimal variational state on a
particular subset of the Hilbert space of the problem.
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We arrive at particular case of the preceding problem when we want to have
the expectation value of an operator A(f) approximately constant over some
interval. The time evolution of an operator 4 (¢) in the Heisenberg picture is

iHr g —iHr . (i)
A() = e 4e =A+it[H, 4] +

ﬂ:ﬁ [H, A]] + ... {6)

where 4 = A{(0) shows that

ﬁ;s um,E:..E,é..:_ %)
dr (=0

Requiring that the first (n — 1) derivatives of the expectation value of A(?) at
{ = 0 vanish is equivalent to the previous situation with

A= A(0), B=[H,A0)}, C = [H,[H, A0)], ... (8)

Starting with the trial state | ¥, ) we are then looking for a state 1> =U|P,>
which satisfies the conditions

Ai:mnm:ﬁvuo_A.ﬁ:m;.ﬁ&:ivnot.. ®

Formulating the problem in this way one can make use of the time evolution of
the operators if this is available. In fact such a time evolution of operators has
recently been studied in a series of papers by Bender, Milton and Sharp
[1] in the finite element scheme.

The solutions to these problems will be given in a form of partial differential
€quations which specify the motion of the state vector in the Hilbert space from
the initial state | ¥, ) to the final state |'¥)> which satisfies Eqgs (5) or their special

form Eq (9). Sometimes it is intuitively clear which the “important” operators

mal vector |§¥), orthogonal to | ) (in order not to spoil the normalization) and

W) =¥ + |6

leads to the fastest possible decrease of (Y| H|¥), with |5 ¥) of a given norm.
We shall obtain the differential eqs. governing the motion of the state |'¥> in the
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w.Eco; space. It will turn out that they are a differentia] version of the r-expan-
sion method which consists in the transformation

|9y s XD (—1H) |y
V< Fexp(—2) [ %

studied recently by Horn and Weinstein [2]. The state converges to the
ground state of the theory.

We then generalize this procedure by writing down differential eqs. for the
motion of a state vector |'¥) in the Hilbert space along the Steepest descent with
fespect to the quantity (| H?[ ¥ — {P|H|¥Y. This quantity has a local
minimum at any stationary state and the method is thus suitable for the search
of excited stationaty states.

The paper is arranged as follows. In Sect. IT we describe two simple warm-up

The spin in the external magnetic field
The simplest choice of the hamiltonian is certainly
H= —g,. (10)
m:.@vwmo further that the starting value of the spin state corresponds to the spin
pomnting in the direction given by the unit vector (cos ¢, sing, 0), 0 < P < nf2:
"= lamios”)

and select the operator 4 — 0,/2. In this case the variational method consists in
minimizing the €xpectation value

E(a) = {¥)| exp(~iaa,2) (- oz)exp(iac,/2)| ¥, > (12)
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A straightforward calculation gives
E(a) = —sinacos ¢. (13)

The extremum is reached for ¢ — /2. It is intuitively obvious what is going on.
The change in the angle a corresponds to the rotation of the spinor around the
y-axis and the optimal q is obtained for the spinor |¥) shown in Fig. 1. The
calculation confirms that. We obtain

E(a) = —sinacos ¢.

The extremum is reached for ¢ — 7/2, which corresponds to the rotation of | ¥%,,»
around the y axis by the angle #/2. The radius of the circle in Fig. 1 is equal to
€os ¢ and this is also the reason why the best estimate based on Eq(13) is
E(a= n/2) = —cos Q.

[
Fig. 1. The rotation around the y-axis heading  Fig. 2. The axis of rotation n is orthogonal to
from |¥,> to |¥). the plane containing | ¥, and z-axis.

The example shows clearly the limitation of the method. If the operator 4 is
chosen in such a way that the rotation around the “ 4 axis” cannot improve the
variational estimate very much, the method will not lead to a significant im-
provement of the variational estimate.

It is not difficult to improve the method in such a transparent situation as the
present example. The simplest possibility is of course to use I¥) in Fig. 1 as the
starting state vector for a further optimization and select now 4 — /2 as the
next operator. The rotation around the x axis performed in the same way as
before (around the y-axis) brings immediately the state vector into the ground
state.

For application to more complicated situations another procedure seems
more promising. We start at the very beginning, considering all the three
possible operators o, O,, g, and try to find their linear combination which
fotates the original spinor |%¥,> in the fastest way to the true stationary state.
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. m:mvc% that :5. original spinor | ¥} “points” in the direction n, (sin Ycos ¢
sin 9sin @, cos J) given by the angles 4, ¢ in spherical coordinates. Then ’

1%y, — exp (—ig/2) cos (9/2)
¥ \exp (ip/2) sin (9/2) )
: . axis
we have to rotate it around the axis orthogonal both to the z-axis and to n,. This
axis corresponds to n(—sjn ®, cosg, 0).
We now obtain the same result in a more formal way, which can be later on

generalized to less transparent cases. The operator A4 to be used as in Eq.(2) can
be generally written as

.AH:.QHSQ. + 1,0, + ny0, (15)

&}08 ™, 1y, 13 are components of a unit vector. The infinitesimal transforma-
tion of | ¥, connected with the operator 4 becomes

1> -1 +ien. al|¥,>.
The expectation values of the hamiltonian H = — 0, in the new state is
E@&) =B H|P,> tied¥lln. o, H]|¥,> +0(s) (16)

We now S.mm:.ao have a maximal change of the expectation value E(¢) with a
fixed (infinitesimal) valye of €and the fixed unit length of the vector n, Inserting
Egs. (14) and (15) into (16) we obtain

K%n.s, HY)P = 4sin 8(n, sin g — n,cos P)’ a7

The right-hand side of this equation reaches the maximum for n, = —sjn o,
™ = C0s ¢, n; = 0, obtained above as well. The infinitesimal rotation around the
axis 1 changes the angle 9 in Eq.(14) but not the angle ¢. The subsequent
optimal infinitesimal rotation is thus again around the n axis, that means that
Wwe arrive at the correct result by a single finite rotation around n (see Fig. 2)

ro.a to one dimensional problem in quantum mechanics. Suppose we have
a rm:::os_mn H and a trial wave function #,(x). Choosing a hermitian operator
A4 we write the new wave function ¥(x) in the form .

¥(x) = exp (iad) ¥, (x) . (18)
and determine the optimal value of ¢ from the requirement
d d
QINQV = alL *(x) A ¥ (x)dx = if P*(x)[H, 4] ¥(x)dx = 0.
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The condition is equivalent to requiring the local minimum of
E(a) = | PE(x)eiet fgint Y (x)dx.

The simplest operators which one canuseare 4 = p = —id/dx and B = x,C=
= Xp, + p.x. In this case the transformation ¥, > exp(iad) ¥, corresponds to
the shift of the argument of the function Py(x): ¥u(x) - ¥,(x + a). The
transformation ¥,(x) — exp (iaB) ¥(x) corresponds to the shift in the momen-
tum space. The two transformations are usually unnecessary because variational
ansitze are chosen in such a way that the expectation values of x and p have
correct values. Finally the transformation

¥y(x) = explia(xp + px — 1)] ¥ (x) = ¥i(a’x)

corresponds to the conformal transformation. In starting with some ¥(x), the
transformation ¥,(x) —exp(iap) ¥, can make the €xpectation value of the
momentum vanish, and subsequent exp (iax) causes {x to vanish. In standard
situations these two requirements are usually built into the |¥,> directly. The
transformation using the operator (xp + px — 1) then changes the “width” of
the function. This is used, e.g. when we are trying to find the best approximation
to the ground state of an anharmonic oscillator by using the functions propor-
tional to exp (—x%¢?) and vary the value of the parameter o.

Itis clear that the variational method for one dimensional problems possesses

III. THE BCS MODEL OF THE GROUND STATE OF THE SUPERCONDUCTOR
AND THE USING MODEL

After the discovery of the mechanism of the Cooper pair creation BCS
formulated the model with the effective hamiltonian

m — MNN#@M.@» + M wtn\ @M\. @». Awov
k kk”
Here b/, b, are the creation and the annihilation operators of the Cooper pairs
@M. = ﬁ.\“ﬁ.wkh @* == ﬁ.'»hﬁk«
where ¢, denote the anticommuting electron operators.
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The b's obey the following Commutation relations

(b, b1 =1- AS; +n_y)
e b} =1 — (g + n_,)+ N:E:La
—‘W\c @»\.‘— = O N.Oﬂ \ﬂ ﬂ \ﬂ\.

and

= T7E*P b))
_ﬁvli ~+h> _ovuﬁ?+§3_ovuﬁﬁows+misﬂ.ﬁzov

M\.wmnn 10> is 90. state with electronic levels filled up to the Fermi Jeve] and with
igher levels being empty. In writing Eq. (20) we have used the relation bft=0

play the role of 4 in Eq. (2). The structure of the BCS Hamiltonian (19) indicates

HMH the operators b, b should play the crucial role. The simplest possibilities

AL = by, AP < b a0 - bt b, AP = —ivt — b,y

The operators 40 4@ .. : ]
: k> g7 act trivially on the erturbative” groun,
unitary operator p g d state |0). The

exp (ig A = exp e (b} — bl

moﬁm nontrivially on H.co vacuum. According to the method of Sect. I we can
make the first approximation to the exact ground state by using the ansatz

b+ —
10> = [Te"% ™™oy
k
Using anticommutation relations for b, b we can rewrite this expression as
1% = ﬁ [cos @, + (b - b,) sin aJl0>. 1)
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This is just the Schrieffer ansatz (20). This demonstrates that the method leads
naturally to the correct expression for the approximate ground state of the BCD

model.
In fact we could proceed in a more general way and start with a linear

combination of operators AQ) and 4%
A =cos BAD + sin BAP = b} P 4 b.e®.
According to the method described in Sect. I we would start with the ansatz
1) = [ [ explia (b e~ + b)) 10) . (22a)
k
Using the anticommutation relations for b,, b; we can rewrite 1'%¥) in the form
[%) =[] lcos q, + i(b; e~ + bye®)sin ¢, 110 . (22b)
k

For 8 = /2 this ansatz is completely equivalent to the standard one in Eq. (21),
for B+ 7/2 we obtain the nonequivalent representations for the vacuum of
the BCS theory. This is connected with the fact that the operator U =
= mexp(—ifb}b,) commutes with the Hamiltonian (19) and this operator
induces the transformations

Ub*U* =b*e ", UbU* = peif (23)

which are just responsible for the transition from (21) to (22).

Abandoning the discussion of the BCS model, let us discuss in a general way,
how to improve by one step the estimate of the ground state of a system. Suppose
we have a trial state I*F,), a hamiltonian and an operator A. We start with an

ansatz

[P0 = |,
and determine @ = g, from the condition
WA\OEQ = (YOLH, A POY = i ()| e [H, A]e“|¥,> = 0.
(24)

The next approximation would consist in finding a state | @) which, apart of
(24), satisfies also

Qu

mmmﬁv.i =0. (25)
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This can be in principle obtained as
hﬁuvv _ OIEE.A:ECV AN@V
where S is to be determined from the condition

d? d .
afm@yno = mMA_ M, 4], o= — () AL [H, Aljem Ay g
) @7)
ote thati[H, A]is a hermitian operato d b i i
et i o p T and because of that no j appears in the
The transition from [¥D> to Y@ leaves the conditi i i
'h ondition (24) satisfied since the
NQ%M_onm_ M.mQOa exp[—B[H, A]] commutes with [H, A] standing in (24).
N - .
&H._.oz.m next step would consist jn a simultaneous fulfilment of the three con-
. CFOIH, 4] 90y ~
= —<{¥I[H,[H, AN = v\, [H, [H, APy =0

Before oosoE&.sm this section let us discuss very briefly, by using the same
method, the one-dimensional Ising model in an external field.

m = e 3 . .
N»Mo (1 + Acosk) (@a+ata )+ N_»»Mc sink(afa?, + aq_,).

We are :&:m the mﬁmn.ama notation, for more detaj] see, e.g. Ref. 5. The opera-
tors a,, q; m::.m_ m::n.oEw:Em:{m (fermionic) relations and annihilate, resp.
Create, topological €xcitations (kinks). ::8&:05@ the operators

+ o gt
bi = afa*, by=a_ia,

describing the creation, resp. annihilations, of kink-antikink pairs, we obtain

H = :MM: +Acosk)2btb, +2i3 ¥ sink(b; ~ b,). (29)

k>0

The structure of the Hamiltonian indicates again that the operators bt, b, play
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the important role and it is natural to assume that the first approximation to the
ground state has the structure

¥ = ﬁ exp lig, (b{e™ + b,e%)| 0y (30)

identical with Eq. (22). In this situation there is no degeneration of the ground
state corresponding to various values of B. This difference with respect to the
BCS model is caused by the presence of terms linear in b¢, b, in Eq.(29). By
minimizing the expectation value of (¥, |H| ¥, with respect to values of a, we
obtain again the correct ground state of the hamiltonian. The similarity between
the Ising and the BCS models is not accidental, in the former the ground state
is formed by the condensate of kink-antikink pairs [6] in the latter by the

condensate of Cooper pairs.

IV. DIFFERENTIAL EQUATIONS FOR THE APPROACH OF THE
VARIATIONAL ESTIMATE TO THE STATIONARY STATE
In a general case we would like to find the state which satisfies simultaneously
the conditions

ﬁm%_&énxf:i:éuo

w%_ssuxfﬁg_@ =0 (31)

m%_m_éuxﬁﬁs_éuo

where A, B, ... Z is specified set of operators and all the derivatives are taken at
t = 0. We were unable to find any method which would permit to write the
answer in an explicit form. Instead we have constructed the following procedure
which starts with the initial estimate |¥,> and then follows the steepest descent

path to a stationary state. ‘
We consider the infinitesimal transformation of a current state

_.m.vl:+m3\~+mw+.:+85:.m\v ‘ (32)
where @, f,... ® are .infinitesimal parameters. The expectation value of the
Hamiltonian in the new state is easy to calculate

E(@,f,...,0) = ¥|[1 — i(ad + ... + wZ)]
H[l +i(ed + ... + 0Z)|¥) = (Y H|¥) —
—iK¥|al4, H + ... + 0[Z, H||¥) + 0(, 0, B, ..)
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It follows that

O I, 4y
Oa

3E
—=i{¥|[H, :
o <¥IH, z11Py
The right-hand sides give components of the gradient of E(q, B,...,®) in the
space wm the Um.amaaﬂn.nm @ P ... @. The steepest descent is in the direction exactly
Opposite to this gradient. Moving along the Steepest descent meang therefore
that the parameters ap, ... .0 satisfy the following conditions
OF ;
= m&—=—ie(¥Y|[H, 4 .
A (HIH, 4]
34
o5 (34)

B~ lmA,ﬁ:m,N:m\va

where £1s an infinitesimal quantity. The infinitesimal transformation along the
steepest descent becomes

.0

5> = K¥POIi[H, 4] 99> 4 + ~HEDD (36)

with the initial condition |¥(r = 0 =|¥>.

HE.m non-linear equation formally looks like a Schrddinger eq. with the
“Hamiltonian™

or
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In a special case when the operators 4, B, ... Z form an algebra, any element of
the sets (38) a (39) can be written in a form exp(iad + ifB + NI

On the set of functions (38) the conditions in Eq. (31) correspond to the local
minimum of the expectation value of the hamiltonian H.

In order to get an insight into how Eq. (36) works we shall consider a simple
example of a spin in the external magnetic field. The hamiltonian is simply

H = —o,, the operators A, B are chosen as 4 = 0., B = o, and let the initia]
state [¥, > correspond to the spin “pointing” in the direction of the x-axis
¥ = _ A _v (40)
v, = z\M 1/

The current state |¥(1)) is denoted as

1) = (22). @

Inserting all that into Eq. (36) we obtain
.0 )
_ml_%Ev = —K¥()| 20, 1¥(D)) 0, - (D) 20, | V(D)) o (D). (42)
It can be shown easily that with the initial condition (40) both a(7), b(1) will

remain real during the evolution and the second term on the r.h.s. vanishes,
Inserting (41) into (42) we get

d(a b

MMAWV = 4ab Alhv . | A#wv
Because of the normalization we can put

a(n)) _ {cos .@A%v .

pﬁvv o Amms 02/ “4)

After inserting that into Eq. (43) we find

d9(7)
dr

= —4sin ¥(1). | (45)

The initial condition becomes
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Making use of the integral

we find the solution of Eq. (45) in the form

= 2atan (e ) (46)

direction” along the ray with angles 8 and @ = 0 in spherical coordinates and

The exponential approach to the Stationary state for 7, o is a typical
feature of Eq.(36). This is connected with the fact the “Hamiltonian” s in

Another very m:.Eu_o €xample illustrating this property of Eq. (36) is provided
by a harmonic oscillator for which we take the starting wave function ¥ (x) of
a correct shape but with a wrong width

¥Yi(x) ~ exp (=x°/24%).

Taking 4 = XP +px, B=i[H, Al =2(p? - x?) and _.:mm:_.zm it into Eq. (36)
shows that a approaches the correct value g, exponentially a — a,(1 + const e’

The case of an infinite set of operators

It is easy to generalize the argument leading from Egs. (31) to the differential
Eq.(36) for a situation with an infinite set of operators. Suppose that there is a
set {4(u)} with U S U < u) and we wish to find a state which instead of Egs. (31)
satisfies conditiong

d
QINAE\:::EV = ICPI[H, A@u)| ¥ for USUSU.

Such a state is obtained as an asymptotic solution (for 7 - o) of the differential
€quation which generalizes Eq. (36), namely

i

d|¥
_QM&V H.\A.ﬁ&_:mﬁ\A?v:.x&vkﬁmva:_.:&v (36b)

with the initia] condition [¥(r = 0 =|¥,>.
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This may be relevant to the situation when we want to find a state | ¥> for
which the time derivative of the expectation value of an operator A(f) vanishes
at any time 7 within 7, < 1 < L

The differential equation becomes

&M% _ % CH@ILH, AW Ay de ()

i

V. AN UNBIASED EVOLUTION EQUATION FOR A VECTOR
IN THE HILBERT SPACE TOWARDS THE GROUN D STATE

In the preceding discussion we have been always biased by two factors: the
choice of the set of “relevant operators™ and the choice of the starting estimate
1%¥,>. There is probably no way how to get rid of the latter bias, but the former
can be avoided. We shall now describe a construction of the evolution equation
for |¥(1)> from the condition that the replacement

(@) = (D) + |5

corresponds to the maximal decrement of the expectation value of the Hamil-
tonian at fixed (¥ |6%¥). We shall perform the construction in two ways. The
former is short but rather formal, the latter (described in the appendix) is less

The expectation value of the Hamiltonian H in the state |¥) = |[¥(D)) is
written in the standard form

_SYIH|PY
E(¥P) T (47)
Then
&P _ 1 ﬁlAﬁ_Eﬁv@ . 48
XY P <¥|¥ o =

The right-hand side gives the direction of the gradient of E(¥) in the Hilbert
space. The steepest descent is Just in the opposite direction and the |¥(7)> should
move in this way. Because of that we can write directly the evolution equation

APWY _ ﬁksa_ssi%@.
or FOIEDHL oo )

This equation can be somewhat simplified. When starting from a normalized
vector |¥,) the evolution equation will not change the norm of |¥> and
<¥|¥> = 1. This follows from the fact that for a normalized 1P = 1,
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the vector [6¥) = [H — CHIHIPUY is orthogonal to [¥). In this situation
the evolution equation becomes

o|¥(7))
or

=~ [H - (VO H VD] (D) . (49)

The simplest illustration of this equation is again provided by the spin in the
external magnetic field. Putting H = — ¢, as before and

[¥(7) HAMMMWV [Fo)> = wﬁv

we obtain from Eq. (49) (¢ = da/dr, b = db/d7)

d=a(l —a + B
@.HEI_IQN.T@NV.

AS.E the initial condition a(0) = b(0) = 1/,/2 (spin :nommmzm: in the x-direc-
tion) we can see that a(7), b(7) will remain real during the evolution. It can be
immediately seen that o> + ? — | implies ad + b = 0 and the spinor remains
normalized. The meaning of the last €q. becomes clear when we make use of
@’ + b = 1 and rewrite them into the form

QMV = i2ab Q no_.v @v&.

This is the infinitesimal rotation of the spinor around the y-axis. With the
parametrization a = cos 9/2), b = sin (9/2) we come easily to the equation

mﬁwﬂ —2sin 9 (50)

dr

and, in the same way as in Sect. IV, we find
H(7) = 2atan (e~%),

which is an exponential approach to the ground state corresponding to & = 0.
Eq.(50) shows that we shalj reach the ground state starting from any spinor
(cos /2, sin 8,/2) except for 8, = & which is an excited stationary state. That
follows from the fact that the r.h.s. of Eq.(50) is negative for any 9 # 0, 7.
This example was, of course, rather trivial and we hope to test the usefullness

of the method in future in more complicated situations like the BCS model o

simple field theoretical models.
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A few comments are in order. The unbiased steepest descent method as given
by Eq. (49) is closely related to the method of r-expansion proposed recently by
Horn and Weinstein {2]. In this approach one writes

e | ¥
(Hle 19,y
In the limit 1 - oo the vector |*¥(1)> converges to the ground state of the system.

The differential form of Eq. (51) follows from the infinitesimal transformation
corresponding to Eq. (51), namely

[0} - |t + A0 = |¥(1)) + 6P|(1)y =

L HOIDY
JFOI( — 2Ha0) 905 . CEEONEION

(51)

1¥(0)) =

This leads immediately to Eq.(49). It is also easy to convince oneself by an
explicit calculation that Eq.(51) is a solution of Eq. (49).
Note finally that the infinitesimal transformation corresponding to Eq. (51)

1) > {l — [H - (P HI'P)dD |y (52)
can be rewritten as
1#(D) > {1 +iddz)| ) | (53)
where A is a hermitian operator
A = 15(0) CH(| + (1)) (D)
with
16(D) =i[H — CPIHI) (D) .
As seen from the simple example with the rotating spin and in a general way
from Eq. (51), the solution of Eq. (49) leads for 7 — oo to the ground state of the
theory and the method is thus suitable only for the search of the ground state

of a theory. A method suitable for the identification of the excited stationary
states will be described in the next section.

VI. EVOLUTION EQUATION LEADING TO EXCITED STATIONARY STATES

The methods described so far lead to the determination of the ground state of
the theory. In this section we shall present a method devised for the search of
the excited stationary states. The method makes use of the properties of the
expectation value of the variance of the energy

D= (Y| H ¥y — (V| H|¥y. (54)
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¥4, HDP < 4¢v1 421wy p (55)

which can be easily derived by procedures used by proofs of uncertainity
relations.')

In order to test whether minimizing D is a usefy] method for the determina-
tion of the excited stationary states we have made some numerical tests with the
anharmonic oscillator, taking the trial wave functions as the superpositions of
stationary states of the harmonic oscillator. The results were quite encouraging,
but since they are not directly related to the present topic we shall not present

We shall now construct the evolution equation which describes the steepest
descent of the state |¥) with respect to the variance D:

The steepest descent — or the gradient in the Hilbert space — is given by the
expression

Fﬁfiékﬁm@w:

WLy (ywy
L H’ |EE&um%_séfxs_m@“w_ﬁ
KFIPy (P ey (P Py PPy .

For (Y| %) = 1 the rhs, becomes
tﬁlAﬁ_%_ivINAEm_momuﬁNAi_EﬁvN:ﬁv

which is orthogonal to ¥ . Because of that we can write the evolution equation
in the form
O ¥
S 5~ CHUP Yy — 29 a1 XY HIH P (56)

It is easy to convince oneself that Eq. (56) follows from the infinitesimal trans-
formation

e~ (H—<¥ 53%3_ .N\v

_ﬁvi]f

A @\_ OINQ*IA.\:: .\\vvf.:._ 3.3

') One starts with the inequality {(4 + itB) ¥[(4 + iB) ¥y >0, t-real; comes to
K¥114, B Yy S KA Y CPIBY and Puts B=H — (¥|H|¥>.
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We shall illustrate the properties of this €q. again on the simplest possible
system — the spin in the magnetic field. Choosing H = — ¢, and the components
of the spinor as cos (9/2), sin (9/2) we obtain from Eq. (56) the following two

equations

9
~ cos—
a[® 2 ) TomN $—cos9 0 g 2
= - _ A
dr mim 0, cos”* 3 + cos 9 me
2 2
The two equations are equivalent and a little manipulation leads to
al.cu —2sin29 57
dr A

The explicit solutions can be obtained by the same method as above, but o.:q
the following point is really important. For 0 < 9 < /2 the r.h.s. is negative,
which means that 9 is decreasing and asymptotically reaching the value p = 0;
For /2 < 3 < wthe r.hs. is positive, 3 is increasing and asymptotically reaches

the value 9 = 7, which corresponds to a stationary state thro situation is

shown in Fig. 3.

“Nw

1

X

Fig. 3. For |¥,> (above (below)) the x, y plane
....\\v\ the state vector | ¥) rotates to the positive (nega-
tive) direction of the z-axis.

The exact solutions are

- T
8= mﬁmboLx« ) for 0 < 9 < M

agr— n
9= 7 — atane " wOnMA%cAﬁ.

One could generalize the previous procedure and derive differential equations
corresponding to state vectors moving against the gradients of higher moments
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within this subspace. For this i
! . purpose we generalize somewheat
leading from Egs.(31) to Eq.(36) and write & procedure

D(e,B,...) =<¥|[1 — i(ad + BB + C)VHP + i(a4 + BB+ . )P
<Pl —i(ad + BB+ . ) H[I + i(ed + BB+ )|y,
We find again a gradient of D(q, B, ...) and write an evolution equation which

moves the state | ) exactly against the i
gradient, that means al
descent. Instead of Eq. (36) we now obtain *ONE the sioepost

2190 = ()i
or! (O = UKD, A1) — 2091 11y (Wi, 195 4 4.
L FUSB AU+ . (58)

VHI. COMMENTS AND CONCLUSIONS

for the ﬁ.n&.oﬁoa\ of the vector in the Hilbert space, starting at |¥,> and
.m&g:?.o:om:w approaching the desired state |¥). For the case Sro_\s it is
Impossible to select a set of “important™ operators one could follow the un-
biased Baz.._oa described in Sect. V. The method of Sect. I. to V. are suitable for

which is especially suitable for the identification of the stationary states of the
theory. The illustrative spin-example shows clearly that the spinor moves to the
“closest™ stationary state.

We have used the method described in Sect. VI. to calculate a few lowest
excited states in simple systems, namely the linear anharmonic oscilator and the
U(1) lattice theory on a single plaquette. In both cases the method works in a
very satisfactory way. Details of calculations and the results obtained will be
described in the forthcoming publication.

It might seem also surprising why we discuss the less general methods when
presenting later on more general ones. This is due to our belief that simpler
methods are sometimes more useful than general ones. In, using for instance, the
general methods of Sects. V. and VI. one has the instruction how the state vector
moves in the Hilbert space but prior an actual calculation one has to specify a
basis in this space, and for practical reasons this basis has to be finite at any step
of the calculation. Practical applications of these methods will not be trivial and
sometimes it might be very useful to have a hint at the extected result based on
a more simple method.

Let us also point out that our starting point which leads to conditions
requiring that time derivatives of expectation values vanish in the stationary
state is, in a sense, a special case of the requirement

CHNADIFD = expli(E, — E)]{ ¥, 40) %D

used in numerical computations of energy differences of stationary states n and
m. Such a procedure was recently used by Bender et al. [1] in their studies
of time evolution of operators by the finite element method. The condition
which we used is obtained from the preceding one if n = . It would be interest-
ing to know whether the conditions corresponding to n # k could provide a
basis for more constrained methods enabling an accurate determination of
energies and state vectors of stationary states.
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APPENDIX

We shall outline here a more elementary argument leading to Eq.(49). Let
[¥) denote the current estimate of a stationary state. We are interested in the
infinitesimal transformation
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)~ 195 = 1% + ¢0)

with [®) being normalized and orthogonal to | ¥) and such that the decrease of

the expectation value of the energy .
OE = {¥|H|¥) — (WIH| ¥
would be maximal. Let us decompose both I'F) and |®> into the eigenstates of i

I¥) = Xc,|n)
19> = Za,(ny.

The requirements given above lead to

Xcta, = Xc, ar*=0 (Al)

Xata, =1, (A2)

under these conditions we have to find the maximum of
OE= —¢g¥ E(cta, + c,a®

with respect to the parameters {q,}.

Introducing Lagrange multipliers we are looking for the extremum of the
expression

2({a,,a,}) = TE,(c*a, + @) = AZata, — p¥(cta + Ga). (A3)
Taking derivatives with respect to a¥we obtain

1 u

a, =—E.c,—Zc,.

Y3 A
This implies

1
D> HMEE\V ~ x|},
The conditions (A1), (A2) lead finally to

|9 = const[H — CHHIP Py,
which leads to Eq. (49).
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OB OJTHOM CIIOCOBE CUCTEMATHYECKOIO YTOYHEHMS BAPHMALIMOHHOI'O
METOJIA NPH BLIYTMCJIEHUAX OCHOBHOI'O M BO3BYXKJIEHHBIX COCTOAHMI

-~

METOAA CHpaBeUIBBLI B TOM CMBICIIE, YTO He TpebyroT [peABapuTenbHOro Beibopa uacTHoro
HaBopa «CooTBETCTBYIOLIMX oneparopos. [epswiit noxamho MaKCUMH3HPYET AEKPEMEHT Bbipa-
xeHus | H|¥> u sxsuanenten Iuddepenunansroi dopme {-PA3TOKEHUSA, HEARBHO HCHOIIb30-
Banro# I'opuom u Beltnurreiinom u TOAXOAAIEH 115 HCCIIENOBAHNA OCHOBHOIO cocTosuus. Bro-
POl HOAXOR NOKATBHO MaKCUMM3HDYET NIEKPEMEHT BBIPaXEHMs (YHE P — (Y H | o seas-
€TCA MOAXONAIMM 1N HCCIEN0BAHMS BO30YXACHHBIX CTAHHOHAPHEIX COCTOAHHIA,
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