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COMPARISON OF SOME METHODS FOR THE
CALCULATION OF THE SAW DIFFRACTION’

KOSEK, M. Liberec

The application of the exact Kirchhoff theory and the angular spectrum method
together with the approximate Fresnel integral and the FFT technique for the SAW
diffraction is described. The computations show that the approximaie FFT method
can be applied in the region from the sending transducer to about two of its apertures
and the Fresnel integral gives good results beyond this region.

L INTRODUCTION

The SAW diffraction is an important natural property of this wave and
usually has a negative effect on the function of the SAW devices [1]. In order to
include this effect into precise design methods of the SAW devices rapid and
accurate computations of the amplitude and phase of the diffracted SAW are
required. One correct and two approximate methods for the numerical calcula-
tions of the SAW diffraction were presented in literature: the “angular spectrum
of waves** method [2], the Fresnel approximation {3} and the approximate
geometrical theory [4].

In this paper four basic methods for the numerical calculations of the SAW
diffraction are compared: the Kirchhoff theory [5], the angular spectrum theory
[6], the Fresnel approximation [3] and the fast Fourier transform (FFT) method
[7]. The first two theories give exact results, the remaining techniques are
approximated ones. The approximate geometrical theory is not included here
because its satisfactory agreement with exact methods was presented in detail in
literature [4].

The results are presented only for the isotropic medium. They can be used,
however, by only changing the scale along the beam axis for an anisotropic
medium if the parabolic approximation of the velocity surface around the beam
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axis is possible [6]. All the usually used substrates for SAW devices belong to thig
group with the exception of the YZ cut LiNbO,, but in this case the SAW
diffraction is negligible. In an isotropic medium [6] the beam profile very negy
the sending transducer has many small peaks, with an increasing distance the
amount of peaks decreases and their height increases. At Some position one

sharp central maximum appears which decreases and broadens at greater djs-
tances.

II. DIFFRACTION TH EORY

A formulation of the problem follows from Fig. 1. The complex amplitude
u(x, v} of the m>.e.< in a point with coordinates x, v should be determined from
the known amplitude #(0,10) on the aperture 2 of the sending interdigjtal

transducer. From the analogy with the Kirchhoff theory of optical diffraction
[5] the following formula can be derived

a

1
u(x, 1) = —_ u(0,y,) 1 + cos f3

N/\ A —a (\.ul.

where j is the imaginary unit, 2 ig the SAW wavelength and k = 27/ is the
wavenumber. The meaning of other symbols follows from Fig. 1.
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Fig. 1. Geometrical description of the SAW dif-
fraction.

The Fresnel integral [1] is an approximation of formula (1)

5 -2
I -ing

u(x,y) = 7 ). exp{ ?}d: (2
V2 Jg
where
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This assumption is valid under the condition x > [3 ~ »ol for all y,.

232

The angular spectrum theory for an isotropic medium {6} is based on the
formulae

u(x, y) = mw % Ptk expCev/k® — & + yk,)) dk, (4a)

29

Ftk) = % u(0,y0) ¢ "y, (4b)

where k., k, are the components of the wave vector 4. The meaning of other
symbols follows from Fig. L. These formulae are the Fourier transform pair. If
the amplitude of the SAW on the aperture is constant, u(0.5,) = A4, then the
formula (4b) has the form

a sink.a

Fk)y=A= ) (3)
(k) r ka

The FFT technique [7] is an approximation of the angular spectrum theory.
According to the definition of the FFT

Nt { 2mk )
Y B, exp %l@lw (6)

~ N
Q\“Qm‘f\«&vn}m &=, N

where for the case of the constant amplitude of the SAW on the aperture

. ..«-;il,,
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the complex amplitude of the SAW can be computed in points with the y
coordinate

yi=i= i=0,1,...,N—1. (8)

me=-—= k=0,1,..,N—1. 9)

k-

In practice the numerical integration of the equation (42) uses a formula
similar to that of the equation (6). Nevertheless there are important differences
between these two techniques. The sum (6) requires the N to be a power of 2, the
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interval between the neighbouring values of the independent variable n, should
be N/2 and the minimal distance between points at which the SAW amplitude
is computed should be A/2. The numerical integration has no limitation. The
function computed by both methods i1s periodic, however, the increase of the
number of steps N in the case of the FFT causes the increase of the period only,
while the accuracy of the numerical integration improves too.

IH. COMPARISON OF METHODS

The complex amplitude of the diffracted SAW can be obtained only by the
numerical computations. The numerical integration was applied to formulae (N
and (4a) of the exact theories while the standard subprogram was used for the
computation of the Fresnel integral (2) and the FFT (6). It was found that the
accuracy of the numerical integration of the integral (1) derived from the
Kirchhoff theory was satisfactory at all distances when minimally 100 steps were
used. On the other hand the number of steps for the same accuracy in the
angular spectrum theory increases with the increasing distance. When compar-
ing the methods the numerical integration was always made with 100 steps and
the results from the Kirchhoff theory was taken as a standard.
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Fig. 2. Comparison of the exact Kirchhoff

theory (full curve) and the approximate Fresnel

30 -0 0 0 0 20 30 integral (dot and dashed curve) at the distance
.% equal to the aperture.

The approximate results of the Fresnel integral (2) are compared with the
exact theory in Fig. 2. In this and the following figures the relative SAW
amplitude 4, is shown. The distance from the mws&sm transducer for Fig. 2 is
equal to the aperture. The agreement in the central part of the beam is not good.
At this distance the results of the angular spectrum method are close to the
results of the exact theory.

The beam profile at the distance equal to three apertures is in Fig. 3. The
angular spectrum theory shows some deviations in all parts of the profile. On
the other hand the Fresnel integral is very close to the exact theory. The
differences between the exact theory and both above mentioned methods on the
beam profile at two apertures from the sending transducer are roughly equal.
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The less known beam profiles on lines
The scale on the horizontal axis is loga

increasing amplitude and period.

parallel to the beam axis are in Fig. 4.
rithmic. The curves oscillate with an

The results of the FFT method are close to the values obtained from the
angular spectrum theory when roughly the same number of steps is used. In
both cases the agreement with the exact theory improves when the number of
steps used in computations increases. The computation time of the angular
spectrum method is very long when the number of steps is great, while the
computer time of the FFT algorithm increases only slightly when the number

of points increase significantly.
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Fig. 3. Comparison of the exact Kirchhoff

theory (full curve) and the angular spectrum

method (dot and dashed curve) on the beam

profile distant three apertures from the sending
transducer,

Fig. 4. The beam profile along the beam axis
(full curve) and on the line parallel to the beam
axis near the beam ed ge (dot and dashed curve).
The distance of the second line from the theore-
tical beam edge is 10% of the aperture.

The curves obtained from the F FT method with 1024 points agree well with
the exact theory for distances between transducers ranging from zero to about
20 apertures. On the other hand, the agreement between the exact theory and
the Fresnel integral method is satisfactory for distances greater than about two
apertures. In the SAW devices the distance between the transducers is usually of

the order of the aperture.

IV. CONCLUSIONS

The rapid computation of the SAW diffraction in the analysis of the SAW
devices requires the use of some approximate method. Two approximate meth-
ods for this computation, the Fresnel integral and the FFT method, were
compared with the exact theories. It was found that the FFT method with 1024
points was applicable in the region from the sending transducer up to about 20
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apertures, the Fresnel integral method should be used at distances greater thanp
about 2 apertures. Both approximate techniques exist in the form of standarg

transducers is usually small. The disadvantage of this method is that it gives the

values only at points with the coordinate, which is the multiple of the half of the
SAW wavelength.
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