acta phys. slov. 37 (1987), No. 4

EVALUATION OF THE ELASTIC CONSTANTS OF SiO
THIN FILMS FROM SAW PROPAGATION
MEASUREMENTS"

FROHLICH. H.—J..Y STAB. H..? Berlin

The dependence of the velocity of surface acoustic waves propagating in a layered
structure on the elastic properties of the layer material has been used to determine the
elastic stiffnesses of the isotropic layer material SiO. The applied algorithm for
evaluating c,; and ¢y, is outlined and the role of Rayleigh-type and Love waves in layer
elastic investigations is discussed.

1. INTRODUCTION

The elastic properties of thin solid films show some differences from their
bulk counterparts [1]. For example, the mass density of deposited films is slightly
Jower than that of the corresponding bulk material. The elastic constants are
different from those of the bulk material and depend on the chosen film growth
conditions. Besides, there are nonstoichiometric films which have no bulk
counterparts. In all these cases the elastic properties cannot be predetermined
from bulk material parameters.

The purpose of this paper is to present a method for evaluating the elastic
constants of a thin solid films deposited onto a substrate with well-known
material parameters. This method utilizes the velocity dispersion of surface
acoustic waves (SAW) in a layered structure. Some theoretical background, a
description of performed experimental measurements and results for this Si0
layers on lithium niobate are given.

IL. SUMMARY OF WAVE PROPAGATION PROPERTIES OF LAYERED STRUCTURE (2]

Consider the configuration is shown in Fig. 1. The substrate occupies the half
space x; > 0. Its surface is covered by a nonconducting thin films of thickness /

) Contribution presented at the 10th Conference of Ultrasonic Methods in Zilina, August
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in intimate contact with the substrate. The direction of the SAW propagation ig

taken as the x, axis. We are seeking surface waves which satisfy the mechanicy]
boundary conditions

ﬁ._: = ﬁ_“: = NA.‘_.J: =0 at Xy = —h :mv
TG =T u’ =y at x, = 0 (1b)
G=1,2, 3)

and, if the substrate and/or the layer material is piezoelectric, the electric
boundary conditions

o' = i, DV = D™ at Xy = —h (2a)
9 = ¢, DY = D at x, = 0 (2b)

where H\ are the stresses, u; are the particle displacements, ¢ is the electric
potential, and D; is the normal component of the dielectric displacement. The
superscripts I, I1, I11 relate to the media as denoted in Fig. 1. The potential
outside of the solid must satisfy Laplace’s equation and must vanish for X3 — 0.

vacuum (medium i)

e RN,

iz

Fig. 1. Coordinate system for surface wave propagation in a layered structure. The propagation
vector lics along x,.

The coupled wave equations

0%, o%u ;
o—l=cg Lte ; L 3
3 " oxpx, 7 axox, e
o’ Oy,
Ex = e, 3b
" Ox0x, Y 0x,0x, e

must be .mo_<om for the medium 1 (substrate) as well as the medium 11 (layer)
where g is the mass density and Cin €5 €; are the stiffnesses, the piezoelectric

constants mma the components of permitivity of the considered medium, respec-
tively. The indices run from | to 3.
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The general solution is assumed to be a linear combination of partial waves
each of the form

u; = A, exp [—akx;] exp [j{wr — kx,)] (4a)
@ = A, exp [—akx;] exp [i[{wt — kx))). (4b)

A, are partial wave amplitudes, k is a wave number, a is a decay constant,
o = 27f and f'is the frequency.

Substituting (4) into (3) gives a set of linear homogeneous equations for the
amplitudes A, This set has a nontrivial solution if the determinant of the
coefficients vanishes. Solving the resulting algebraic equation yields in general
(piezoelectric anisotropic medium) eight ¢’s each as a function of the unknown
phase velocity. In order to ensure that the displacement and potential am-
plitudes vanish for x; — co the real part of a must be positive for the substrate.
Thus, because the a’s occur in complex pairs with positive and negative real
parts, respectively, four partial waves of the substrate and eight partial waves of
the layer contribute to the general solution.

u; = B, A™ exp [—a"kx,] exp [j(or — kx,)] (5a)

a7
¢ = B, A" exp [—d™ kx;] exp [j(ot — kx))] (5b)

where B,, are weighting factors of the partial wave amplitudes. The parameter
m numbers the really existing decay constants and partial waves and the Einstein
summation rule is used. Substituting (5) inte “* _.nd (2) leads to a second set of
homogeneous linear equations for the weighting factors B,,. To obtain a nontri-
vial solution the determinant of coefficients must vanish. The resulting equation
can be considered as an implicit equation in the wave propagation velocity
v = w/k. The value of v satisfying that equation can only be found by numerical
methods with the help of a computer. The found v then is used to calculate the
a’s, A’s, and B’s and, thus, the general solution is known.

In some cases the complexity of computation can be reduced but use of a
computer is still necessary. This happens if (a) the sagittal plane (x,, x; plane)
is a plane of reflection symmetry for both media, (b) the sagittal plane is
perpendicular to a twofold axis of both media, (c) both media are isotropic.

Then the sets of equations separate into lower order sets. Accordingly, two
different types of SAW can exist in such layered structures, the Love waves and
the Rayleigh-type waves. This holds also for the intermediate case of a layered
structure consisting of an anisotropic substrate and an isotropic layer provided
that the sagittal plane is a plane of reflection symmetry or is perpendicular to
a twofold axis of the substrate. It should be noticed that the main difference
between the conditions (a) and (b) consists in the coupling behaviour of electric
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potential and particle displacements. Condition (a) leads to a coupling of the
electric potential to the sagittal plane components of displacement. Condition
(b) leads to a coupling of the electric potential to the transverse displacement
component. Thereby, the generation of one of the allowed modes can be con-
trolled in experiments.

The Love waves are surface modes polarized perpendicular to the sagittal
plane. They exist if the layer shear velocity is lower than a substrate shear
velocity in the considered geometry. If they exist there is a family of modes. For
each mode the phase velocity at a cutoff value of &k is equal to the mentioned
substrate velocity and decrease with increasing /k. At large values of hk it
approximates the layer shear velocity. It can be shown by a more detailed
analysis that for an isotropic layer the stiffness ¢, of the layer material is the
responsible elastic constant which influences the Love wave velocity. That
means, on the other hand, that ¢, of the layer material should be determinable
from velocity measurements and otherwise measured mass density of the iso-
tropic layer.

The Rayleigh-type waves are surface modes polarized in the sagittal plane.
They degenerate at a vanish layer thickness to the Rayleigh-type wave of the
substrate. There are two different situations: If the shear velocity of the layer
material 1s lower than that of the substrate, there is also a family of modes as
in the case of the Love waves. Staring at the Rayleigh-type wave velocity of the
substrate the velocity in the layered structure decreases with increasing sk to the
layer Rayleigh wave velocity. At a certain value of ik the second mode starts
with the substrate shear velocity. It also decreases with increasing sk etc.

If the shear velocity of the layer material is much larger than that of the
substrate, there is only mode. Starting at the Rayleigh-type wave velocity of the
substrate the velocity in the layered structure increases towards the shear veloci-
ty of the substrate (at least for sufficiently large values of hk). Near the point
where the two velocities are equal the wave becomes leaky because the penetra-
tion of the vertical component of displacement becomes very deep.

A Rayleigh-type wave consists of both a longitudinal and a vertical com-
ponent of particle displacement. It can be considered as a combination of a
longitudinal and a shear wave each of them contributing to the common velocity
by the relevant elastic constants c,, and c,, of the isotropic layer, respectively.
Therefore, these constants should be determinable from velocity measurements
and the otherwise measured mass density.

IT1. EXPERIMENT

SiO layers were deposited onto Y-cut lithium niobate samples by E.o thermal
evaporation method described in [3]. SAW were generated by interdigital trans-
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ducers located at the interface between substrate and layer. The velocity of SAW
propagating along the crystalline Z axis was determined by a delay time method
yielding the group velocity v,. The length of the propagating path was 1cm.
Different values of #k were obtained by using samples with different layer
thickness /, whereas the wave number was kept constant at k = 21/48 um™"
applying always the same transducer pattern. ,

The dependence of the measured velocity on /ik is shown in Fig. 2. The wave
is classified as a Rayleigh-type wave because condition (a) of chapter 2 is satisfied
and in case of decoupled modes only that mode shows an increasing velocity
with increasing values of hk.
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Fig. 2. Dispersion curve for an isotropic SiO layer on a YZ-LiNbO, substrate.

IV. EVALUATION OF ¢, AND c¢,, AND DISCUSSION

The evaluation of the elastic constants of SiO was started with the computa-
tion of the phase velocity in the SiO,/YZ-LiNbO, layered structure because the
material parameters of fused quartz are known. Then the density of the layer
material was changed to the actual value g, = 2 x 10* kg/m’ [4] for SiO and a
set of computations was performed with the layer elastic constants changed step
by step. The obtained phase velocities were transformed into group velocities to
be compared with the measured velocities. The elastic constants giving the best
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agreement of the calculated with the measured dependence of velocity on hk
were found to be

cn =827 x 10 N/m?, ¢,y = 3.25 x 10°N/m? and
Cia = ¢y — 2¢4s = 1.77 x 10" N/m?.

From those the Poisson ratio follows as v = 0.177. The values should be
compared with results obtained by measuring the SAW velocity in the SiO/YX-
quartz layered structure and applying the Fernell approximation [3]. The stiff-
nesses obtained by converting the bulk wave velocities of SiO from [3] and
assuming v= 0.177 are

e =797 x 10°°N/m?, ¢, = 3.13 x 10"°N/m? and
=€ — 24 = 171 x 10°N/m?.

The difference (about 4 %) seem to be too large with regard to the accuracy of
the measured velocity of better than 0.1 %. We suppose that the following facts
are mainly responsible for the observed differences:

Firstly, the film growth conditions cannot be kept absolutely constant. For
example, small uncontrolled changes of the evaporation rate of SiO cause
variations of the layer composition leading to regions of limited thickness with
different mass density and different elastic constants. The computation
algorithm, on the other hand, presumes a homogeneous layer.

Secondly, the two rows of stiffnesses were obtained from layers grown on
different substrate materials leading at least to growth differences in the initial
state.

Thirdly, the fitting procedure can give inaccurate values of ¢y and ¢y,
respectively, because the velocity in the layered structure was found to be only
weakly dependent on c,,. Therefore, one should look for a substrate configura-
tion where the SiO layer will lead to a love wave in order to determine indepen-
dently the stiffness c,,.

Last not least, it should be remembered that the results for SiO on quartz
were obtained by an approximation method.

V. CONCLUSIONS

The elastic constants of thin layers of isotropic materials can be evaluated
from a measured SAW velocity dispersion in a layered structure by using a fitting
procedure. The stiffnesses c,, and c,, are simultaneously obtained by using the
Rayleigh-type waves as demonstrated in case of SiO layers on lithium iovm:.w.
An independent and more accurate determination of ¢y by the Love waves 1S
recommended.
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ONPEAEJEHUE YINIPYTUX MNOCTOAHHBIX TOHKHX ILIEHOK
Si0 HA OCHOBE U3MEPEHHI PACITIPOCTPAHEHWSA
NMMOBEPXHOCTHBIX AKYCTUYECKBIX BOJIH

Jns onpelieneHus NOCTOSHHBIX XeCTKOCTEH M30TPOIHOro cJios Matepuana SiO MESHONESORAtE
3aBUCHMOCTb CKOPOCTH PACIPOCTPAHEHHA NOBEPXHOCTHBIX AKYCTHYECKHX BOJIH B CJIOHCTOM 3.3:?
Type Ha ero JacTuyeckue cpoicTBa. ONUCAHA CXEMA BBLIYHCICHUA KOIPHUUMEHTOB ¢4 U ¢ e 2
takxe obcyxaaeTca ponb BosiH Tuna Penes u JlaBa B uccneOBaHHAX 3INACTHYECKUX CBOMCTB

TOHKHX TINCHOK.
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