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ULTRASONIC STUDIES OF THE NONLINEAR
PROPERTIES OF DIAMOND LATTICE SOLIDS AT

LOW TEMPERATURES'

BREAZEALE, M. A.> KNOXVILLE

The possibility to begin with fundamental lattice dynamics and include anharmon-
ic terms to calculate the relationship between atomic force constants and elastic
constants is examined. The theory of Keating is used to interpret experimental data
on diamond lattice solids. Third order elastic constant data on silicon and germanium
have been measured between room temperature and liquid helium temperature by use
of the harmonic generation technique. These data and the theory of Keating have
been used to evaluate a complete set of third order elastic constants over the entire
temperature range. Validity of the numerical values of third order elastic constants
is examined by calculating the Griineisen parameter and comparing it with that
obtained from thermal expansion data.

L. INTRODUCTION

I should like to discuss the contribution we have made to the understanding
of the relationship between lattice dynamics, in which one considers atom-atom
interactions in a crystalline solid, and third-order elasticity in which one con-
siders the relationship between a stress and the corresponding deformation in
the nonlinear approximation. This subject is not new. Fundamental progress
was made in the theory early in the twentieth century by Born and cowor-
kers [1]. Of course they limited themselves to the harmonic approximation and
their calculation resulted in a nonphysical negative elastic coefficient, but the
basic mathematical approach was correct. Since then so many people have been
concerned with the theory and its experimental confirmation that it would be a
terrific task just to list all of them. Rather than try to enumerate specific
contributions we will focus on only one theory: that of Keating [2], and on
only one set of results: ours, realizing that most people in this room at one time
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or another probably have delved more or less deeply into this fundamentg]
subject. The reason I dare discuss this subject at all in the presence of this group
of outstanding scientists is that we have a unique means by which we can make
measurements that heretofore have been impossible and we now can use both
theory and experiment to gain some insight into the fundamental physics. We
measure the nonlinear behaviour of crystalline solids by a technique that allows
us to express combinations of third-order elastic constants as a function of
temperature down to liquid helium temperatures. The third-order elastic con-
stants are determined by lattice anharmonicity. Thus, we have the possibility to
compare lattice dynamical theory and experimental results obtained by yl-
trasonic techniques over a wide range of temperatures, and in detail sufficient to
Justify inclusion of nonlinear (or anharmonic) terms that untii quite recently
were ignored because of lack of experimental data.

Speaking of experimental data: If one were to list solids in terms of tech-
nological importance. then. of course, such solids as quartz, lithium niobate and
the like would come to mind first. We have made some measurements with such
materials, but these are not the data | would like to discuss today. The reason
is that for the moment I would like to consider nonpiezoelectric materials of
simple crystalline symmetry for which one can hope that the lattice dynamical
model would work reasonably well when one includes only a finite number of
terms in the potential function describing interatomic interactions. If one were
to set as his goal the comparison of theory and experiment for some very simple
lattice, then probably one would want to begin with a lattice as simple as that
of the alkali halides. We considered this possibility recently and began experi-
ments with NaCl. Although the data might be interesting, we have been able to
measure NaCl only at room temperature. Study of the behaviour as a function
of temperature has not yet been completed because the extremely large thermal
expansion coefficient has made difficulty for us in our measurements. We expect
soon to have data on the third-order elastic constants over a temperature range
in which the thermal expansion coefficient changes to a remarkable degree, but
at the moment I will focus on data from other solids of cubic symmetry.

Some time ago we measured the diamond lattice solids germanium and
silicon. It is these data I would like to focus on because 1 believe they are
fundamentally interesting. In order to do so it will be necessary to remind you
of the basic lattice dynamical theory of Keating [2].

To begin with, central to the theory is the derivation of the lattice strain
energy from two different perspectives: that resulting from interatomic interac-
tions and that exhibited as elastic interactions in the solid as a whole. Since the
lattice strain energy is fundamental to theories describing such different
phenomena as thermal €xpansion on the one hand and the propagation of an
ultrasonic wave in a nonlinear crystalline solid on the other, the derivation can
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be very informative about the interrelationship among the various physical
quantities. The expression for the elastic strain energy in terms of ::w_omn
displacements resulting from elastic strain has some restrictions placed on it by
rotational and displacement invariance, which limits somewhat the number of
terms one needs to consider in the series expansion. To describe a crystalline
lattice beyond this point one must define the specific lattice of interest.
Keating chose to describe the diamond lattice solid. And I am glad he did,
for those are the ones we measured. The fi. Jl expression for the strain energy
for diamond lattice solids is assumed by Keating to depend upon only two types
of interactions: a nearest-neighbour central term and a noncentral second-
neighbour term. This assumption makes the expression for the strain energy
tractable, and it is this assumption that we would like to test in our comparison
of experimental results. Other possible interactions are: long-range quadrupolar
interactions and shell-shell interactions, both of which have been ignored or only
partially included in the effective value of the nearest-neighbour interactions.
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Fig. 1. The crystal model: the open and filled circles represent the atoms on the two different
sublattices.

The basic crystalline lattice is shown in F ig. 1. Itis a thombohedron with two
atoms (0 and 1) on its major axis which is directed along the [111] direction. The
three neighbouring cells of interest contain atoms 2 and 5, 3 and 6, 4 and 7,
respectively. It is the interactions among these atoms that must be accounted for
in the theory.

II. THE KEATING THEORY

In principle the theory is straightforward: One calculates the strain energy in
terms of force constants associated with the chosen atomic interactions, then
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calculates Eo same strain energy in terms of the corresponding elastic stra;

A comparison of corresponding terms in the two strain energy ex m:%Em.
m:.oim one to identify lattice parameters on the one hand with mnnovzﬁ_ _.o:m
third-order elastic constants on the other. Thus, one is making a direct connec

U_,..wm_.om. But our ability to make a relatively complete test depended on
coincidence. The coincidence was that only two harmonic and three m:rmn:.oaw
force constants are necessary to describe the strain energy in the diamond lattice
according to :.,_w Keating model. The relationships are given in Table I We could
measure velocities and hence calculate all three second-order elastic constants
but we .so.c_a measure only three combinations of third-order elastic 83&:8,
The coincidence that the Keating model required only three anharmonic woaoo.
constants N.:_oina Us to proceed with the experimental test of theory. As you
know, cubic lattices such as the diamond lattice require six H::a-oamq m_mvm\:o
constants to specify the nonlinear behaviour.

Our .Eoomaca, then, to study the anharmonic behaviour of silicom and
germanium was to measured three combinations of third-order elastic con-
stants. Then we used this information to calculate the three anharmonic force
constants y, § and ¢ of the Keating model. From this information the Keatin
model allows us to calculate all six third-order elastic constants. :

dﬁ fact that we can measure as a function of temperature to 4K has made
wo.mm&_n a test of the validity of the procedure. Having a complete set of
::ﬁ-o&ﬁ elastic constants allows one to calculate the Griineisen parameter
.,i:or is directly available from thermal expansion data. Comparison vmﬂmamam
independently obtained from thermal expansion data allows us to test the

.ﬁ:&:w of the whole procedure, and make some guesses about where to start to
improve the model.

II1. CONNECTION BETWEEN THEORY AND EXPERIMENT

| To am.:sn the :o:::ow:. wave equation appropriate to the description of
:Mnmmo.s_o wave propagation one expands the elastic potential energy in terms
of strains and finds that the coefficients are the elastic constants:

_ 1 I
o) = o1 2 Cona Ty s + 31 s Cotton Ty Mt T

BY using the appropriate form of Lagrange’s equations and specializing to a
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specific orientation of the coordinates with respect to the ultrasonic wave
propagation one can write the nonlinear wave equation in the from [3]

3
@x..“.w. 2 Jy E

Oa, k=1 Ony
which shows exactly where the strain energy enters into the nonlinear wave
equation. We prefer to specialize this equation to propagation in a pure mode
direction (for cubic lattices one of the three principal directions). This allows us
to write the nonlinear wave equation in the form
%u du ou du
;= K=+ 06K+ K) — S
or Oa Oa Oa

14}

in which K, stands for a linear combination of second-order elastic constants
and K; stands for a linear combination of third-order elastic constants. The
expressions for K, and K; for the pure mode directions in a cubic lattice are given

in Table I1.
3K, + K,

:HE&:QSISDI ﬁlﬁ'@ \Awwumocmwﬁntee
2

contains a second harmonic whose amplitude
K
LR Sy
K,

\ﬁw”

The experimental procedure we use is to use the apparatus schematically
represented in Fig. 2a with a detector as shown in Fig. 2b to measure the
amplitudes of the fundamental and the second harmonic at room temperature.
A plot of A4, vs. A} has a slope which is proportional to

g 3Ktk
K,

which we usually call the nonlinearity parameter. A typical plot of the data is

shown in Fig. 3. Taking the slope of the curves and knowing k = 21/ and the

sample length we can evaluate 8 using the expressions given in Table I1. Having

room temperature values of f” we can evaluate K.

A measurement as a function of temperature of the relative magnitudes of the
amplitudes of the fundamental and the second harmonic completes the measure-
ments and allows us to plot K; as a function of temperature. A plot of our data
on silicon is given in Fig. 4. As can be seen, the data are quite consistent as a
function of temperature, but they are not the simplest combinations of third-

207



208

-order elastic constants possible. For example, C,,, appears in all three sets of
data. m:c:.mn::m out C,;, and other common constants allow us to plot HM

three combinations Ch, Cy + 4C\¢ and C,,, + 6C, . + 8C,s, given in Fj mn
For further data interpretation we depend upon the coincidence that only %_.Em
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Fig. 2a. Schematic diagram of the apparatus.
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2b. Capacitive microphone for measuring ultrasonic wave amplitudes.
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interatomic force constants are required by the Keating model and calculate A
éand ¢. Having the Keating anharmonic force constants allows us to calculate
all six third-order elastic constants as shown in Figs. 6a and b.

Using the same procedure with germanium data, we are able to plot all six
third-order elastic constants of germanium as given in Figs. 7a and 7b. The
similarity of the behaviour as a function of temperature gives some reassurance
of the validity of the data, for all diamond lattice solids should behave in a
similar manner.

Fig 3. Measured second harmonic amplitudes
plotted as a function of the square of the funda-
mental amplitude.

Fig. 4. Values of the parameter K, plotted as a
function of temperature.

Fig. 5. Three combinations of third-order elastic
constants available from K, data plotted as a
function of temperature.
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w/_o«.f having all six third-order elastic constats, 1t is possible to calculat
O:.,Snmmo: parameter by making an appropriate average, and it happens 9% ﬁwa
Gruneisen parameters of diamond lattice solids have a common peculiarit H. )

they go to negative values at approximately one-tenth of their Deb e W‘
perature. The ability of the model to predict the Griineisen vmn::nﬁwm oﬂw-
temperature range should be a good test of the model. Thermal ex m”“mﬁ. .
measurements give a Griineisen parameter for silicon as shown in Fig. % H:ﬁv%
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Fig. 7ab. Third-order elastic constants of germanium.
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Fig. 8. Behaviour of the Griineisen parameter of  Fig. 9. Silicon Griineisen parameter data plotted
silicon as a function of temperature. as a function of temperature.

we have results from thermal expansion measurements to compare with the
values obtained by acoustical techniques. The comparison is given in Fig. 9. The
curve labelled “present work* is to be compared with that labelled “’thermal
experiment*. Several aspects of this comparison are apparent. First, the agree-
ment is not all that good. I think the appropriate response to this observation
is that measurement of the temperature dependence of the third-order elastic
constants has improved the agreement over that previously obtained by
Brugger and Fritz [4] who made a comparison but assumed the third-
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Table 1

Keating model relationships amon

. ‘ g microscopic coefficients and macro ic elasti
ot T scopic elastic constants for

Second-order elastic  Third-order elastic
constants constants
m,:nbl.wm Cuyy=7y~-86+9¢
4a q_: =y—0+¢
& _a-3 Copy=y+365-3¢
== Caw=r1 -+ 81+ +
Tl + B~ D+ Cuf
. __ap Cieo =M1~ =801 + O +
= +al + 9B -9+ ¢,
a(a + ©
A Cosn = A1 = O
where a is the Where
lattice spacing &= Casl
a+ fi L
Table 11
K, and K, parameters for the principal directions in a cubic lattice
Wave propagation )
direction L ks
[100] Cu Cu
[110] Ci+ Cpy +2C, Cii+3C 1, + 12C,
2 4
[1] . G +2C,+4C, 1
n mAD:+an,:~+ 12C,, +
+24C 4 + 2C 55 + 16Cys5)

muom.wo,n elastic constants are temperature independent. We used Brugger’s and
! M“H Mﬁwzﬁnﬂﬂa to anm_o:_wﬁ the Griineisen parameter from third-order elastic
ut used our measured temperature dependent thi i
: ird-order elastic

constants in the calculation. P
. m»mm mﬂ_ .m:onnmﬁ?n to the Keating theory we have used data from Beattie
ZM ~o irber irw :.ﬁmwraa the pressure variation of sound velocity at
- om mﬂwmaea, liquid ::Qmoz temperature and liquid helium temperature
ong %: our M_mmm.:nna combinations of third-order elastic constants to get the
..u=~36 wcm:& GmEm‘wnm:a and Schirber TOEC data“. The necessity to
interpolate between their measured data evidently is respondible for the shift of

the minimum away from the temperature at which it occurs in the thermal
expansion data.

212

Let us now look at the similarities between the curve we obtained using our
data and the Keating model. First, the minimum in our data occurs at the
proper temperature and the general shapes of the curves are similar. They agree
very well at room temperature, but this is true of all of the curves. The corres-
ponding curves for germanium are given in Fig. 10 and show the same general
behaviour.

Finally, I would like to speculate that possibly the agreement between the two
curves could be improved by a more complete model than that of Keating,
one that possibly takes into consideration long-range quadrupolar interactions
or shell-shell interactions. Although this speculation may be accurate, it is
uncertain whether a more complicated lattice dynamical model would make it
possible to improve matters. It is entirely possible that a more complicated
model would require more than three anharmonic force constants. If it did, then
the coincidence that has allowed us to make the comparison between theory and
experiment for silicon and germanium might no longer occur. Possibly the result
would be that the insight we have gained trough this interpretation of the
ultrasonic data would turn out to be qualitatively correct but quantitatively
uncertain. Newertheless, even with the present model we have been able to use
the Keating model and our data to obtain a set of all six of the third-order elastic
constants of the diamond lattice solids silicon and germanium. By using the
third-order elastic constants and the theory of Brugger and Fritz we have
been able to calculate the Griineisen parameters of silicon and germanium
between room temperature and 4K and to use the agreement between the
calculated Griineisen parameter and that calculated from thermal expansion
data to define a starting point for further refinement of the theory.
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M3YYEHUE HEAMHENHBIX CBOMCTB AJIMA3HOIA PEMIETKK
TTPU HU3KHX TEMNEPATYPAX IPH nomoiu YIIBTPA3BYKA

B pa6ote PACCMOTPEHA BO3MOXHOCTD H3YHUCHHA OUHAMHKH %v\zhmzmzamhr:om peieriy
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