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QUARK-GLUON PLASMA FORMATION
IN RELATIVISTIC HEAVY ION COLLISIONS WITHIN
THE HYDRODYNAMICAL DESCRIPTION

WNZV—umW, B.Y BARZ, H. W.." Dresden
LUKACS, B.» Budapest

Within the one-dimensional one-component fluid-dynamical description the
space-time picture of the quark-gluon plasma formation with finite rearrangement
time during relativistic heavy ion collisions is studied. For the QCD-suggested conver-
sion time scale in the order of I fm/c we find the maximum effect of the delayed
deconfinement, manifesting itself e.g. in very broad fronts separating hadron matter
and plasma, strong extra entropy production and strong time dependence of the
deconfined state. The change of the flow pattern is discussed as a possible sign of the
deconfinement transition.

1. INTRODUCTION

One of the primary aims in performing relativistic heavy ion collisions is to
look for novel states of nuclear matter. The most interesting question concerns
the possibility of achieving a transient deconfinement state [1]. Most theoretical
studies deal with the scheme of ultrarelativistic heavy ion collisions which are
accessible already in cosmic ray experiments. On the other hand experiments are
now planned in the range of T,,,/4 ~ 10GeV (fixed target), which extend the
present heavy ion reactions at Bevalac and Dubna energies. Recent estimates of
the nuclear stopping power [2] indicate that in this energy range the transformat-
ion of kinetic incidence energy into internal excitation energy is possible, at least
in some of the collisions. If the energy density achieved is sufficiently large, a
baryon-rich quark gluon plasma is expected to be produced [3].

In the present paper we consider the formation of this plasma in heavy ion
collisions with bombarding energies 7,,,/4 ~ 10 GeV within the one-component
one-dimensional fluid-dynamical model. It is our aim to study the plasma
formation characteristics in one well-defined scheme of the collision process in
order to give a reference point for further work. The one¢-component hydrodyna-
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mical model will certainly only apply to a part of central collisions where a giant
bag, created via fluctuations or seat effects, stops the Incoming matter and
accelerates the local equilibration. The model of interpenetrating nuclej has
been considered in Ref. [4]. The application of a two-fluid model with finite
stopping power will be subject of forthcoming investigations.

The main component of hydrodynamics is the equation of state. Despite of
many efforts a straightforward QCD-founded equation of state does not exist

while the plasma is a state of less-correlated quarks and gluons. Therefore, with
increasing density or temperature one expects a rearrangement of quarks which
is called the deconfinement transition.

According to this rearrangement one should be able to calculate the equation
of state for any given density and temperature; nevertheless one cannot expect
that a particular approximation is applicable in the whole relevant range. In
most cases two asymptotic equations of state can be obtained for extreme stages
of the transition, one for nuclear matter and the other for the plasma. These
approximations will not be valid for intermediate regions and, therefore, the
asymptotic equations of state do not match smoothly, but are rather a break-
point in the thermodynamical potentials, thus representing a first-order phase
transition somewhere in the transition region. Since there the asymptotic equa-
tions of state are not necessarily correct, this first-order phase transition may be
a result of the approximations used. In fact, even for the vanishing chemical
potential the order of the deconfinement transition has not been determined yet.
(A tendency to believe in second-order transition can be observed at present,
according to the private communication of J. Polényi.)

While the order of the deconfinement transition may possess a high theoretic-
al relevance, it does not necessarily have a great influence on the final result of
the dynamical processes leading to deconfinement. A continuous rapid struc-
tural change may simulate a first-order transition in several aspects if the
rearrangement requires both energy and time. (Note that the compressibility is
not infinite during a first-order transition in a true dynamical process.)
Therefore, we use here a two-phase model to study the transition dynamics, in
particular non-equilibrium effects and the finite rearrangement time for chang-
ing the structure, and their influence on the space-time picture of the plasma
formation during the compression stage. We tackle the question whether there

signalize plasma occurrence. Some of them are the extra entropy production [5]
and the shock front or flow instability [6] considered recently.
The plan of the paper is as follows. In Section 2 we present the generic scheme
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of phase transitions in a volume-averaged hydrodynamical anmoago:. Hyd-
rodynamical calculations of the plasma formation are reported in Section 3. j._a
discussion of our results can be found in Section 4 and the summary is given in
Section 5. The Appendix contains a presentation of our scheme for solving the
relativistic hydrodynamical equations in comoving Lagrangian curvilinear coor-
dinates, and also the derivations of some formulae too long for the main text.

2. NON—EQUILIBRIUM PHASE TRANSITIONS

The one-component fluid-dynamical model uses a unique velocity field which
can be introduced if the particles motion is sufficiently correlated. >nooﬂ_.§m to
such a four-velocity field i (i =0, ...,3) the energy momentum tensor T% of an
isotropic medium can be decomposed [7]

TV = (e + p)u'sd + pgi — 200" — (@pY + g + g, (2.1)

where g7 is the metric tensor (signature +2 is used); 77 and {'stand for the mr.om_.
and bulk viscosity coefficients; o’, p¥ and @ denote the shear and Eo.wno:o.s
tensor (o = (' + u/)/2 — gi@)3, P =g’ + u'W) and the expansion (@=u)
and ¢’ describes the heat flux, respectively. The equations of motion take the
form

=0, 2.2)
(md), = 0. (2.3)

The thermodynamic quantities n, ¢ and p are the baryon density, energy .an:m:%
and pressure defined in the local rest frame. The equations of motion are
manifestly covariant by using the covariant derivative [7].

Now we want to describe the evolutionary aspects of dynamical phase tran-
sitions with respect to different intensive variables of the two phases of the
medium. Thus, finite relaxation times and a finite growth velocity of the new
phase are taken into account.

Consider a mixture, with particle numbers N, (a = 1,2) in the phases | and
2 and with occupied volumes Vi; the total particle number is N and the total
volume V. Introduce the coefficients

x=N/N, %=V¥VV (2.4)

If the individual phases are sufficiently small, then only volume averages appear
in the hydrodynamical equations. These averaged quantities can be constructed
as

A=x4,+(1—-x)4,, a=3%a +(l-%)a, (2.5)
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where A4 stands for any specific quantity and g for any density. Having the
averaged density n, the weight x follows from

X = (1~ n)/(n, — n,) (2.6)
and x is determined by

H:.n energy momentum tensor of the mixture consists of densities, so it can be
written as

TV= 2T + (1 - %) 17, Q2.7)

Using Em m.ncmmosm. of motion (2.2) and (2.3) one can calculate the entropy
production in the mixture 2.7). Neglecting viscosity and heat conduction the

.mvaommo entropy (s) increase due to the nonequilibrium nature of the transition
1s (cf. Appendix B)

2
Li+1,

S =

w? I @ = paim = (- 7y (s, - 1 ?v..m 28)

together with the entropy production of each equilibration process. The second
law of thermodynamics prescribes the direction of processes:
e if 4, > p,, then X <0, that is there is a particle transfer into phase 2;
(1) if p, > p,, then % > 0, that is the first phase expands and compresses Hmm
low-pressure phase;
@ii) if 7, > 7;, then there js a heat flux from phase | into phase 2, thus
aanmmEm the total difference of the entropies in the phases N(xs, — (1 — X)s,).
This shows how the system tries to achieve equilibrium. In an equilibrium
transition the Gibbs conditions are fulfilled (T, =1, p, = p,, 4y = 1) and the
entropy production vanishes. The non-equilibrium transition should be always
taken into account if the time necessary for building up the new phase is
comparable to (or longer than) the characteristic time of the change of the other
thermodynamic quantities. Generally speaking, in such cases the relative weight
of the phases differs from the energy minimum.
To solve the hydrodynamical equations one must take into account the
relaxation equations for the quantities x, ¥ and x5y — (1 — x)s, determining the

relaxation of chemical potential, pressure and temperature differences of both
phases, respectively.
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3. PLASMA FORMATION DYNAMICS

Now we apply the scheme of non-equilibrium transitions to the delayed
baryon-rich plasma formation. The idealizations we introduce to make the
situation tractable are the following ones:

(i) one-dimensional (plane-symmetric) flow,

(1) thermal and mechanical (pressure) equilibrium are achieved much faster
than chemical equilibrium [8],

(i) neglect of heat conduction, i.e. ¢ = 0,

(iv) use of a two-phase model equation of state.

Ac Hrding to item (j) viscosity enters the equations of motion as a modifica-
tion of pressure via

p=p—(n+4£3)6. G

Due to item (ii) one relaxation equation for the progress variable x is needed
which we take in the linearized form for the conversion rate

t= —(x - x)/T, (3-2)

where 7 is the relaxation time scale in the order of the QCD time scale
he/B" ~ 1fm/c (B is the vacuum pressure) and x,, is the equilibrium weight
belonging to the minimum free energy, .

]

=

sy = ALl (33)

3|

iy — 1,

where 71, (T) denote the phase boundaries. (In principle the rate eq. (3.2) should
be determined by a microscopic picture of droplet creation and growth, but in
a non-static environment this is a tremendous task hampered, in the present
case, by some unknown parameters for describing nucleation. So we use the
relaxation time approximation [9] which represents a slow conversion law since
spinodal decomposition is not taken into account.) Our calculations are based
on a suitably parametrized nuclear matter equation of state which reads for the
energy density and the pressure (some physical arguments are listed in Appendix
O
e =mn + Kn(n/n, — 1)*/18 + 3Tn/2 + 72T%10

3.4)
p = K(n/ng)*(n — ny)/9 + Tn + 72T%30,

where n,=0.16 fm > is the nuclear ground state density and m denotes the
nucleon mass; K stands for the nuclear incompressibility, respectively, This
simple form is based on a cold parabolic compression part and a thermal
Boltzmann part for the nucleons and a pion component (massless and non-
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interacting for convenience) as well. More sophisticated models are discussed in
Ref. [10], but for our purpose eq. (3.4) is sufficient,

The plazma is described as an ideal massless quark gluon gas with confine-
ment effects solely parametrized by the vacuum pressure B = (235MeV) [4, 1 1]
1.€. u u

e=377T30 + 3127 + 3ui22* + B,
P =(e—4B)/3, 3.5)

" =2u(T + 12/ )3,

in eq. Au..uv“ but up to now there has been no well-founded (lattice) QCD
oozm::m.:on (except the lowest-order perturbative corrections) hence the
present simplest form should be used for clarity,

Applying the vacm.ooa&mo:m for matching €qs. (3.4) and (3.5) one gets a

quence of different degrees of freedom in both phases.
Transport coefficients in nuclear matter and in individual plasma constituents

Hﬂn. cc_w. Smowmmg coefficient £ is here taken to be 0, but the delayed phase
szm_.:o: BIVes rise to relaxation phenomena attribute to £[13]. The dynamical
equations AN.N.V, (2.3) and (3.2) are solved in Lagrangian coordinates with the
method described in the Appendix.

In Fig. 1 the time evolution of density profiles is displayed for a bombarding

deconfinement in the central part; however, as seen in Fig. 1, the compressed
matter behaves strongly time dependent, j.e. stationary conditions are not
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achieved. The density remains below the value determined by the Rankine-
-Hugoniot-Taub equation, while the temperature exceeds the corresponding
value. These results must be contrasted with those obtained for smaller relaxa-
tion times 7 < I fm/c [6, 12], where stationary conditions with a stable front are
obtained and the final states satisfy the Rankine-Hugoniot-Taub equations.
The extra entropy according to eq. (2.8) has been calculated in Ref. [5] to be
in the order of 1. The large entropy carried by the plasma will be accordingly
enhanced, thus improving the chances for the plasma diagnostic already en-
visaged by entropy measurements [3]. In the limit T — 0, where the phase
mixture is determined by the Maxwell construction, one finds across the front
an entropy increase as given by the shock wave model independent of the

viscosity used.
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Fig. L.: Evolution of the half density profiles for  Fig. 2.: The mass fraction of the matter standing
two colliding nuclear tubes with the length of  in the deconfined state as function of the relaxa-
15fm corresponding to the diameter of urani-  tion time r. Curves are given for averaging over
um. The value of the relaxation time ris | fm/c.  the partcontaining 25% (full line), 50% (dashed
The profiles are labelled by the centre of mass line) and 75% (dotted line) of the mass of the
time in fm/c. The arrow indicates the density  incoming tube with the length of 15fm. For

predicted by the shock wave model. comparison, the deconfined mass fraction is
displayed for an incoming tube with the length
of 8fm corresponding to the diameter of
calcium (chain line, average over 75 % of the
mass). The values displayed are taken at maxim-
um transformation, i.e. at a time instant when

the outermost shells are already expanding.

In Fig.2 the mass fraction of the deconfined matter as function of the
relaxation time  is displayed. One observes that at 7 < 1 fm/c the pure decon-
fined state is reached, while for > 1 fm/c its fraction decreases fast. When the
conversion rate is too small, even in the central part the matter remains in an
overheated hadronic state with plasma droplets immersed. Before the latter
coalesce, the system expands again. Possible experimental signs of such droplets

are discussed in Ref. [16].
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4 maximum affection of the front structures can be observed. Similarly, at

M: H 1 fm/c the extra entropy production, according to eq. (2.8), takes its maxi-
m. ,

Fig. 3.: Typical density profiles for different val-

ues of the relaxation time 7(in fm/c). The centre

of mass time, where the snapshots are taken, are

25,2.8and2.3 fm/cforr = 0.1,1.0and 19 fm/c,

i 5 = respectively. The length of the incoming tubes is
z{tm] 15fm.

4. DISCUSSION

o %Mn nom.c:m m~.6<.< that the 0.0U-mcmm.om.S.m time scale for the rearrangement
a ronic matter into plasma is not ab Initio small in comparison with the time
of a relativistic heavy ion collision. Therefore, the stationary estimates relying
be taken with caution
by proper dynamical calculations. Taking the proper %Mﬂnﬁwﬂm%ﬂ%ﬂwﬁ&
Mnom%ﬁmwﬁ So.mna that two regimes are possible (i) fast rearrangement (station-
MN a: 1tions in the compressed zone are achieved) and (ii) slow rearrangement
(the nownmsoa phase behaves strongly time dependent and there happens a
UnomawE:m of the front separating the confined and the mooosmznanmwmﬂomv
.>aov:=m the QCD time scale fi¢ /B"™ ~ 1fm/c/ one expects that the second cas ;
is n&.ﬁ&i for the relativistic heavy ion collisions. Thus the collective flow Ecmw

behind them occur. In particular the delayed phase transition changes the flow
pattern not only in head-on collisions but also in noncentral and asymmetric
collisions. One can identify the collective flow by measuring the dN/dcos Oy,
distribution. The present studies indicate that the clear peak observed in the
global flow analysis should broaden essentially or even vanish due to the
changed flow pattern above the threshold of the deconfinement transition. This
discussion is in line with Ref. [6], where we argued that a particular shock front
instability in a narrow band of bombarding energies above the deconfinement
threshold affects the flow in the same manner. Since our present calculations
indicate that the front behaves similarly as in the case of its instability, we
conclude that for the finite transformation time of the deconfinement the
changed flow pattern continues up to higher energies.

In considering the dynamical path through the phase diagram (cf. Ref. [12])
one finds that during the compression a fluid element is rather hot in entering
the coexistence region. Then latent heat is needed for melting the hadrons, and
consequently the matter cools being strongly compressed due to the softness of
the equation of state in the mixture phase. After reaching the pure deconfined
state it is heated up again accompanied by relatively small compression. Up to
Ti/A = 7GeV the intermediate state is hotter than the final state. Therefore, a
possible signal of plasma formation would be the detection of two thermal
sources of directly emitted lepton pairs and gammas to be attributed to the
hotter intermediate state and the cooler final state. The finite transformation
time enhances this effect since the matter stays longer in the superheated inter-
mediate state; still it may be hard to filter out such a double source effect from
disturbing signals.

Some criticism of the present model might arise from the neglect of sidewards
flow and finite stopping power. Sidewards flow will decrease the density. Quan-
titative estimates must rely on the threedimensional hydrodynamical model. A
comparison of the present one-component one-dimensional model with the
two-fluid model with finite stopping power is in preparation.

5. SUMMARY

In the present paper we have considered one well-defined scheme of plasma
formation in relativistic heavy ion collisions relying on the assumption of rapid
stopping of incoming nuclear matter and subsequent fast thermalization. We
have found a strong broadening of the front between confined and deconfined
matter as well as a non-stationary behaviour of the deconfined state caused by
the finite rearrangement time. It is suggested that these peculiarities might
enable to detect the deconfinement transition experimentally via collective flow
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analysis. The effects of the finite transformation time turn out to be much more

important than viscosity effects in consideri
. onsidering the fr
production. g ont structure and entropy

::\ﬁ Q% considered bombarding energies the final plasma is cooler than the
wid% 1ate mcvwlﬁﬁoa nuclear matter; so two thermal sources of directly
emitted lepton pairs and photons should be observable in sophisticated measu-

rements.
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APPENDIX

A. Lagrangian coordinates
The Minkowski metric is described by the line element

ds’= —dT® + dY? + dx? 4 d22. (A.1)

T=Ttr), Y= Y(t,r), x= const, z = const, (A2)

where ¢ is some parameter of the evolution.

ooﬁ”%.é ”::oacon £ and r as new coordinates being Lagrangian comoving
mates. Observe that the pair (¢,r) is not unique; r is simply a numbering

a particular pair the two-dimensional . :
obtains the form part of the line element (A.1) in them

ds? = I.Aw.m — %N.v de? + NANUNW = v\.L\\v drdr + ANJW _ M\NL dr. (A.4)
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By means of eq. (A.3) the g, term can be removed. Namely,
g" = (d/dr){(dt/dr) g" + (0i/or) g},

and if g” # 0, the bracketed term can be made zero by choosing a proper new
evolution parameter (¢, r). The remaining transformations are

f=1(1), 7=F#0r). (A.5)
We write the obtained metric in the form
ds’ = —e?®0ds? 4 2404,  dx? + dz2. (A.6)
Since the r coordinate of the particles is constant, the velocity possesses only a
t component, and it is normalized, therefore
u'=(e"%0,0,0). (A7)
Consider now the details of the transformation. Obviously
e’?ds’ — e*dr? = dT? — dY? (A.8)
and, ;dx’ being a scalar,
—e®dt = —Ird7T + udy. (A9)

One can express the derivatives of 7 and Y from egs. (A.8) and (A.9)
Y, =ue®, Y, =Te", T,=Y,v,T,=vY,0o=u/l, *=1+u’. (A.10)
The proper clock time ¢ and the coordinate time ¢ are related via dr = e®dr.
The projection of equation (2.2) onto v, yields with ¢' = 0
(e/n) — (/)i =0, (A.11)

while the projection onto p,, results for k = 1 in

D, = —p,lle+p). (A.12)

o

The metric (A.6) describes a flat space in curvilinear coordinates. The flatness
condition means the vanishing of the curvature tensor, Ry, = 0 [7]. The only
non-trivial equation expressing the flatness of the plane-symmetric metric (A.6)

reads [17]
(@, + @, ~ DAY — (A, + A—DA)=0. (A.13)

This equation and the integrability condition for Y, stemming from egs. (A.10),
can be rewritten to get

ud,e®=Te", u,e®=e'A T (A.14)
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Using eq. (A.12) and the baryon conservation eq. (2.3) in the form
n= Nye AF

with N, and F as normalization factors, we find the remaining dynamical
equations

u,e”®=FIp [(e + p), (A.15)
n = I'Ny/FY,. (A.16)

The whole set of equations to be solved consists of the thermodynamic equa-
tions relating e, p and n, equations for 7 and ¢ as function of # and T and the
dynamical equations (A.10—16). Observe the great and unexpected similarity
with the spherically symmetrical motion in comoving coordinates (cf. refs |7,
18]). Thus we use the same difference scheme as in ref. [18] to solve the set of
dynamical equations.

A more detailed derivation including the initial and the boundary conditions
can be found in ref. [19]. The advantage of the comoving coordinates is that one
follows the fate of fluid elements in their rest frame and, even during large
compressions, no rezoning is necessary. :

Note that in the coordinate system (A.6) the nuclear tubes are stretched by
the Lorentz factor I" due to the use of the internal coordinate time instead of
being contracted when using the observer time.

B. The entropy production

The energy and momentum balance of a system is governed by the vanishing
of the divergence of the energy-momentum tensor, which is eq. (2.2). Thisis a
vectorial equation of four components, while the four-velocity u' possesses only
three independent components. Therefore the equation

Ty, =0 (B.1)

is independent of the equation of motion; it carries thermodynamic meaning
[20]. Now, for a one-phase simple fluid the local state s characterized by two
thermodynamic variables, the particle number density » and the entropy density
ns; since €q. (B.1) contains derivatives along the velocity field, it can give an
equation for the combination of 7 and s, whence, by means of eq. (2.3), i can
be removed, so the final result is a source equation for s (cf. Ref. [21], but note
the difference between the definitions of s there and here).

In our case the local state is characterized by five thermodynamic data, which
may be chosen, e.g., as ny, ny, 8y, 5, and x. (The second weight factor % can be
expressed by them too.) Now, €q. (2.2) yields an equation for the combination
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of the dot derivatives of these five data. Hence, using also the thermodynamic
relations

I

; X L dn,
de; = I d(ns) + p,dn, B.2)

Ins; + pun, — e,

Pi

(i=1,2) valid for each individual state, by rearranging the terms, one can
directly obtain eq. (2.8) for the specific entropy s

s=x5 + (1 — x)s, (B.3)

of the mixture. For more details see Ref. [22].

C. The equations of state

The most informative form of the equations of state is a thermodynamic
potential expressed by its own variables, e.g. the energy density e as a function
of the particle number density n and entropy density #s; as shown by eq. Aw..mv,
the temperature T, chemical potential u and pressure p can be given by deriva-
tives. If e is given in any other form, e.g. by n and T, then eq. (B.2) shows that
partial differential equations are obtained, hence extra information is needed.
Using the variables n and T, both e(n, T) and p(n, 1) are necessary, but they are
not independent; eq. (B.2) leads to the integrability condition [19]

Oe op

n—+T—=¢e+p. C.n
on or

Now, the energy density in eq. (3.4) contains four different term. The first is
the energy equivalent of the rest mass. The second is the simplest approximation
for the compresion energy; we know that the cold nuclear matter possesses an
energy minimum at »,. The third is the thermal energy for a classical Boltzmann
gas; these three terms were used in Refs. [5] and [12). The last term is a
blackbody radiation energy for spin 0 and isospin 1; this is meant as the pion
contribution if the mass is neglected. Therefore this approximation is decent at
moderate compression, and at temperatures above 100 MeV but well below the
nucleon mass. Even there eq. (3.4) is a simplification, but this fact is counter-
balanced by the benefits of an analytic form. The pressure function is taken
according to eq. (C.1).
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