ON THE CALCULATION OF STANDARD THERMODYNAMIC FUNCTIONS OD DIATOMIC MOLECULES IN SF, PLASMA')

ŠTEFANOVÁ, M.,2) BARTL, J.3) Brno

The work deals with problems of determining standard thermodynamic functions $C^0_n(T)$, $\Phi^0(T)$, $S^0(T)$, $H^0(T)$ — $H^0(0)$ and $G^0(T)$ of some molecular components present in SF₆ plasma at temperatures above 6000 K. In the available foreign literature these functions have been published only up to a temperature of 6000 K, with the exception of molecular fluorine. For the calculation the approximate method of Mayer and Geppert—Mayer has been chosen. The results of the calculations are then compared with NBS data (USA) and with IVTAN data (USSR).

I. INTRODUCTION

Recently great attention has been paid to the use of single-pressure systems with intrinsic accumulated energy used for electric arc quenching [e.g. 1]. The dynamic phenomenon of the nozzle clogging and declogging due to the action of the electric arc is accompanied, in addition to the SF₆ dissociation into single components, also by the pressure rise in the arc quenching chamber. With the pressure rise in the system the dissociation processes are suppressed and that is plasma even in the region of elevated temperatures. Published data have not considered the occurrence of the mentioned components at temperatures above 6000 K because the necessary input data (standard thermodynamic functions — STF) are published only up to the temperature 6000 K. In this work the calculation results of STF for temperatures above 6000 K are presented.

1) Contribution presented at the 6th Symposium on Elementary Processes and Chemical Reactions in Low Temperature Plasma, JELŠAVA-HRÁDOK, June 9—13, 1986

Ústav speciální elektrotechniky SVVÚ VUT, Božetěchova 2, 612 66 BRNO, Czechoslovakia.
 Katedra elektrických strojů a přístrojů FE VUT, tř. Obránců míru 10, 662 43 BRNO, Czechoslovakia.

04. 3/ (190/), NO. 2

II. METHOD OF CALCULATION

The standard thermodynamic functions in the state of an ideal gas can be determined by means of the particle partition function [2]

$$Q(T) = \sum_{i} G_{i} \exp\left(-\frac{E_{i}}{kT}\right). \tag{1}$$

For one mol of gas in the ground state the STF are connected with the partition function and its derivations through the relations:

$$S^{0}(T) = R \ln \frac{Q(T)}{N} + RT \frac{\ln Q(T)}{T}$$
 (2)

$$\Phi^{0}(T) = R \ln \frac{Q(T)}{N}$$
(3)

$$C_p^0(T) = RT^2 \frac{2 \ln Q(T)}{T^2} + 2RT \frac{\ln Q(T)}{T}$$
 (4)

$$H^{0}(T) - H^{0}(0) = T(S^{0}(T) - \Phi^{0}(T))$$
(5)

$$G^{0}(T) = H^{0}(0) - T\Phi^{0}(T) = H^{0}(T) - TS^{0}(T).$$
(6)

The partition function (1) can be expressed in the form

$$Q_{\ell\ell}(T) = Q_{\ell\ell} \cdot Q_{\ell\ell\ell}. \tag{7}$$

The translation part takes for the diatomic molecules the form

$$Q_{\prime\prime\prime} = \left(-\frac{2\pi nkT}{h^2}\right)^{3.2} \cdot \frac{NkT}{p}$$

8

and the internal part

$$Q_{cn} = \sum_{i} g_{i} \exp\left(-\frac{\varepsilon_{i}}{kT}\right) Q_{rottib}^{i}. \tag{9}$$

 Q_{rorth}^{i} involves the summation over the vibrational and rotational energy levels of the molecule.

The most precise results in the calculation of the partition function and STF can be achieved by means of the direct summation [3] of electronic, vibrational and rotational states. Because, however, the number of vibrational-rotational levels is very high, the calculation by this method is rather difficult.

From the approximate methods published the most widely used is the Mayer and Geppert-Mayer (MGM) method [2] which was also chosen for our calcula-

Rem.: 1 — calculation by direct summation method [3];		1.5			1 35.057 3		5	15						15		6 274.990 2			T 10 ³ K 1	Comparison of STF for C ₂ according to various methods and input data
ect summation n	50.467	- 46.107			37.175 37.175	$C_p^0(T)$ J ₁	- 357.496	337.977	315.390 315.393		-	$S^0(T)$ J ₁	- 313.9	296.748			211.053 211.047	$\Phi^{0}(T)$ J	2 3	for C2 according
nethod [3];	67 46.898	07 43.728			75 36.947	J mol - 1 K - 1	96 354.008	335.678	93 314.046			J mol-1 K-1	312.209	748 295.637			047 210.985	J mol - 1 K - 1	4	to various metho
	46.684	43.586	41.091	00.704	36 934		353.802	335.544	313.579	244.397			312.110	295.573	2/3.3/9	063 3EC	210.983		5	ds and input dat
	50.555	41.508	40.207	30.919	36 010		352.257	334.380	313.539	244.396			311.337	295.183	2/3.445	270.703	210 085		6	Ē.

calculation by MGM method with consideration on the basic electron level [4]; calculation of USPE;

by the MGM method with consideration of ground level input data [4];

the same as in 3, input data [3];

the same as in 3, input data [5];

by MGM method with excited electron levels considered, input data [5]

number, by integration and Q_{couvb} can be expressed as a simple explicit function of temperature and tabulated rotational-vibrational constants substituted over rotational and vibrational levels, provided these have an infinite tion of the internal partition function in equation (9) the summation can be

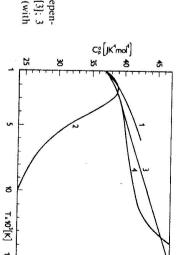
$$Q_{roreib} = \frac{q_0}{\sigma(1 - e^{-u})} \left(1 + \frac{1}{3q_0} + d_0 + \frac{\beta_1}{e^u - 1} + \frac{2xu}{(e^u - 1)^2} \right). \tag{10}$$

constants for the SF molecule, data from [3] were used. graphs. In this paper data from Ref. [5] were used, with data [3] and [4] employed spectra of molecules and mentioned compendiously in a number of monothe fact that papers [4, 5] do not mention the values of rotational-vibrational mined on the basis of the analysis of rotational and vibrational-rotational β_1, x, u, q_0 depend on temperature and rotational-vibrational constants deterfor the comparison of the effect of input data on the resulting STF. Owing to

110

III. RESULTS AND DISCUSSION

according to various methods and input data. The most precise results are provided by the direct summation method (column 1) with the limitation of the Shown in Table 1 and in Fig. 1 is the comparison of STF values for F₂



dence $C_p'(T)$. 1 — NBS 4; 2 — IVTAN [3]; 3 Fig. 1. Comparison of the temperature depen- USPE (ground state level); 4 — USPE (with all excited levels published)

which itself in the calculation of the composition by changes in the molar at the temperature of 6000 K reach, in the case of the Φ^0 value 1.2 JK⁻¹mol⁻¹, particle partition function of vibrational-rotational energy levels. The calculation involves only the ground electronic state $X^1\Sigma_g^+$. The determined deviations

Standard thermodynamic functions of F₂

10 ³ K	$C_p^0(T)$	$S^0(T)$ J K $^{-1}$ mol $^{-1}$	$\Phi^0(T)$	$H^0(T)$ — $H^0(0)$ kJ mol ⁻¹	$-(G^{0}(T)-H^{0}(0))$ kJ mol ⁻¹
-	36.918	244.396	210.985	33.411	210.985
12	38.266	270.491	234.924	71.135	469.848
نبا	38.913	286.138	249.556	109.745	748.668
4	39.409	297.402	260.174	148.914	1040.696
S	39.832	306.428	268.535	188.539	1342.675
6	40.207	313.539	275.445	228.562	1652.671
7	40.544	319.762	281.342	268.940	1969.397
· 00	40.853	325.197	286.492	309.640	2291.934
9	41.156	330.026	291.066	350.644	2619.590
10	41.508	334.380	295.183	391.969	2951.827
Ξ	42.022	338.358	298.929	433.714	3288.223
: 12	42.891	342.048	302.371	476.130	3628.447
: 5	44.385	345.535	305.558	519.703	3972.253
7 4	46.831	348.907	308.534	565.218	4319.479
5	30.333	352.257	311.337	613.792	4670.060

Standard thermodynamic functions of S

1		
5 6 8 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	· 4 ω μ -	10 ³ K
44.255 46.728 49.502 52.042 53.999 55.258 55.866 55.955 55.674 55.157 54.508	37.265 40.117 41.579 42.571	$C^0_p(T)$
355.752 344.030 351.442 358.222 364.472 370.232 370.232 375.532 380.400 384.870 388.978 392.762	270.660 297.412 313.999 326.089	$S^0(T)$ J K $^{-1}$ mol $^{-1}$
207.149 295.933 303.277 309.634 315.290 320.412 325.110 329.456 333.502 337.284 340.831 344.169	236.667 261.035 276.095 287 140	$\Phi^0(T)$
155.760 1199.098 244.540 292.653 343.462 396.540 441.227 506.838 562.786 618.625 674.056 728.896	33.992 72.756 113.711	$H^0(T) - H^0(0)$ kJ mol ⁻¹
1148.594 1479.664 1819.643 2167.438 2522.318 2583.706 3251.098 3624.018 4002.019 4384.686 4771.638 5162.535	236.667 522.069 828.285	$-(G^{0}(T)-H^{0}(0))$ kJ mol ⁻¹

Table 4

Standard thermodyna,

13 13 15	208765432	10 ³ K
45.786 46.689 47.379 47.875 48.205 48.401	37.949 38.442 38.943 39.691 40.757 42.046 43.398 44.676	C' _p (T)
360.531 364.939 369.032 372.845 376.406 379.740	295.797 311.283 312.407 331.171 331.477 344.875 350.578 355.764	J K ⁻¹ mol ⁻¹
320,437 324,285 327,845 331,162 334,268 337,189	250.202 260.221 274.829 285.397 293.705 300.576 306.458 311.622	Solution of SF $S^0(T)$, $S^0(T)$ $S^0(T)$ $S^0(T)$ $S^0(T)$ $S^0(T)$ $S^0(T)$ $S^0(T)$ $S^0(T)$ $S^0(T)$
477.193 494.245 541.887 589.940 638.253	33.619 71.153 109.361 148.041 187.331 227.530 268.920 311.643	$H^0(T)$ — $H^0(0)$ kJ mol ⁻¹
2846.190 3204.369 3567.132 3934.141 4305.102 4679.749 5057.840	236.202 520.442 824.487 1141.586 1468.524 1803.454 2145.205 2492.980	$-(G^0(T)-H^0(0))$ kJ mol ⁻¹

increasing temperature the differences increase and at 10 000 K they reach for because C_p^0 contains the second derivation of the partition function. With fraction F_2 by about 10%. Noted for the highest differences is the C_p^0 . This is

112

than the NBS data (column 2). are considered, to the data obtained by means of the direct summation better in Fig. 1, the MGM method approximates, when all the published excited levels approximately one order lower differences. As it is clear from the courses of C_{ρ}^{0} , input data (see columns 3-5) leads, as against other methods of calculation, to the Φ^0 values 3.2 JK⁻¹ mol⁻¹ and for the C_p^0 4.0 JK⁻¹ mol⁻¹. The use of different

 S_2 and SF with the use of data [5], [5] and [3], resp., and the excited levels F_2 : Shown numerically in Tables 2 to 4 are the results of STF calculations for F_2 ,

IV. CONCLUSION

of the latest data are applicable to the calculation of the equilibrium comtions in STF, in comparison with the direct summation method (with respect to position of SF₆ plasma for temperatures above 6000 K. The determined deviatheir molar representation in plasma SF₆) are acceptable. The calculated STF F2, S2, SF by means of the MGM method with the help

REFERENCES

- Ueda, Y., et al.: IEE Trans. PAS 100 (1981), 3888.
 Mayer, D., Geppert-Mayer, M.: Statističeskaja mechanika. IL, Moskva 1952.
 Red. Gluschko, V. P., et al.: Termodinamičeskije svojstva individualnych veščestv. Tom I,
- kn. 1, 2. Nauka, Moskva 1978.
- [5] Huber, K. P., Herzberg, G.: Konstanty dvuchatomnych molekul, č.1, 2. Mir, Moskva [4] Red. Stull, D. R.: JANAF thermochemical Tables. NDS, Midland 1971.

Received August 6th, 1986

Revised version received October 20th, 1986

К РАСЧЕТУ СТАНДАРТНЫХ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ ДВУХАТОМНЫХ МОЛЕКУЛ В ПЛАЗМЕ SF₆

сравнение результатов вычислений с данными НБС США и ИВТ АН СССР. Для расчетов был использован приближенный метод Майера и Гепперт-Майер. Проведено эти функции, за исключением молекулы фтора, приводятся только до температуры 6000 К. ствуящих в плазме ${
m SF}_6$ при температурах свыше 6000 К. В доступной зарубежной литературе $C^0_p(T), \; \varPhi^0(T), \; S^0(T), \; H^0(T)$ — $H^0(0)$ и $G^0(T)$ некоторых молекулярных составляющих, присут-Работа посвящена проблемам определения стандартных термодинамических функций