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ON LOCALIZABILITY OF PARTICLES

PAZMA, V.." Bratislava

We present reasons which suggest that operators proportional to the generators
of the Lorentz boosts play the role of the position operators in relativistic quantum
mechanics.

I. INTRODUCTION

One generally believes that particles are localizable. By this we usually mean
that for a given particle there exist operators g, (i = 1, 2, 3), eigenfunctions and
eigenvalues which can be interpreted as localized states and possible values of
position (the components of the position vector) of a particle in question.

In non-relativistic quantum mechanics the construction of the position ope-
rators is quite wellknown: The position is represented by three operators canon-
ically conjugate to momenta. The eigenfunctions of these operators in the
x-representation are &-functions. The position operators are commuting, her-
mitian, possess desirable transformation properties and the concept of localiza-
bility is invariant with respect to Galilei transformations.

In relativistic quantum mechanics the situation is more complicated despite
of a considerable effort to solve the problem. A lack of basic experimental
information forces physicists only to guess under what conditions we can
construct position operators. For this reason several not equivalent approaches
have been developed and none of them seems to have been generally accepted.
One can say that any approaches contains postulates which seem to be, more or
less, in harmony with our everyday experience. However, theoretical considera-
tions resulting from the postulates lead to serious difficulties.

Out of many approaches in constructing position operators the first systemat-
ic is that of Newton and Wigner (NW) [1]. In their work localized states (and
then position operators) are deduced from general principles. If we denote by S,
a set of states describing a particle localized at the origin 0 of space-time, then
the NW postulates can be summarized as follows:
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NWI. S, is a linear set, i.e., the superposition principle holds.

NW2. S, remains invariant after the 3-rotations (rotations in the ordinary
space) around 0 and after space and time reflections.

NW3. All states from S, are orthogonal to states obtained by 3-translations.

NW4. Certain mathematical conditions must be satisfied.

It follows from NW1.—4. that there exist hermitian position operators g, for any
particle with a rest mass M # 0 and an arbitrary spin but there are no position
operators, e.g., for a neutrino or a photon. A serious difficulty of the NW
approach consists in a relativistically non-invariant introduction of the localiza-
bility concept. By this is meant that the description of a localized particle by
observes in different frames of reference is not physically consistent. Namely, if
@, 1s a state of a particle localized at the origin 0 and if we perform a Lorentz
transformation preserving the point 0, then from a new frame of reference a
particle is not localized [6].

There are several improvements of the NW approach [2—4]. However, loc-
alized states reamin non-covariant [4] or position operators are not unique [2,
3, 5]

The Lorentz invariance of the localizability concept is one of the starting
points of Kalnay’s approach [6]. Considering a spinless particle only, Kélnay’s
postulates can be formulated as follows:

K1. Each component of the 3-position is represented by an operator g,.

K2 ¢ (i=1,2,3)are conponents of a three-vector operator.

K3. The Lorentz invariance of localization. (If a particle is localized in a region
R of the space-time and if we perform a Lorentz transformation leaving R
invariant, then from a new frame of reference a considered particle must
also be localized in R).

K4. The space translational operator transforms localized states into new
localized states.

The main result of Kaélnay’s work is: If a localization is Lorentz invariant,
then the position operators are not hermitian. (Moreover it is necessary to note
that those position operators do not posses a proper behaviour under the
Lorentz transformations as will be seen later).

In other works position operators also possess undesirable properties. For
example, position operators for neutrinos do not form a 3-vector under 3-rota-
tions [8, 9], only two components of the 3-vector position operator are commut-
ing [10}, the localizability of the photon has been achievedunder the assumption
(among others) that the photon can also occur in states with negative energy
[11], the space-time position operators for a spinless particle are not defined in
the Hilbert space spanned by solutions of the Klein—Gordon equation [12]. A
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more detailed analysis of the above and other works relating to localizability can
be found in [7).

The forementioned results are to a certain degree surprising, because con-
ditions imposed on g, seem to be in most cases natural. Moreover the non-rela-
tivistic version of those conditions for M # 0 leads to physically acceptable
results. The question is whether (or in what sense) the localization of particles
is a physically meaningful concept. To illustrate some problems in greater detail
we present in the next section one of the possible constructions of the position
operators for a free particle. In Sec. I1I we propose the localizability concept
within the framework of relativistic quantum mechanics. Sec.IV contains
several notes.

II. POSITION OPERATORS FOR A FREE PARTICLE

The dynamics of a particle can be formulated by means of the constraint
formalism. In such a case a particle is described by the co-ordinates % =1,
2, 3) and the momenta p°, p’ (i = 1, 2, 3). The hamiltonian H is equal to zero and
in the non-relativistic case the momenta satisfy the constraint

ko k
A=p+2L 9 (1)
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where M is the mass of the particle in question and summation over repeated
indices is understood throughout the paper. The equation of motion is of the
form [13]

y_¥
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where tis an evolution parameter, A(z) is an arbitrary function and {,} denotes
the Poisson bracket of quantities in question. For a free particle the non-zero
Poisson brackets of the basic variables are

Pt =% = 1. &)

Different choices of A(r) corespond to different parametrizations of world-lines
and A is the generator of those reparametrizations [13]. Since the physical
quantities F must be invariant with respect to those reparametrizations, they
have to satisfy

{F, 4} =0. “4)

In the quantum theory the basic variables are replaced by operators satisfying
the following commutation relations



X% pYl = if [x, p/] = ihd" (5)
and the physical states ¥ of the spinless particle are projected by the condition
A¥=0. (6)

Let us now observe the position operators ¢ The natural and physicaily
acceptable conditions imposed on g' seem to be the following:

1. The transformation properties of ¢’ are the same as those of x'. (Here the
standard transformation properties of x°, x/, p% p’ under the Galilei trans-
formations, 3-rotations, 3-translations, space and time reflections are assu-
med i.e. (x°, x¥) transform like (time, position) and (p°, p’) transform like
(energy, momentum)).

2. [¢', A) = 0 (in accordance with Eq. (4))

¢ are constructed by means of x°, x', p°, p', M and # only.

4. The description of a localized particle by observers in different frames of
reference has to be physically consistent.

=

It follows from 1—3 that
.X.cﬁm

g =x— oy ihap'(p*p") ! )

where @ is some dimensionless constant. Now if we put p° = —p*p*/2M into a
wave function in the p-representation, we can write
T o S
P

Eigenstates of ¢’ corresponding to eigenvalues @ are of the form
: i
o(p*; d) = const. (p*p*)?? exp Alm a»h»v )
and the wave function

P, &, 1) = oo o) exp TW (t— emg (10)

where ¢ is time, can be interpreted as the wave function of a particle localized
at the time ¢, at the point 4.

As to condition 4 let us perform a homogeneous Galilei transformation. In
a new frame of reference, which moves with the velocity v* with respect to that
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in which a considered particle is described by ¥, (p, ¢; d*, t,), a particle will be
described by ¥, given as

i*G*

#i

..N\e = OX@ A v ﬁo@»u Nu Q»u Nov

where G* = 1p* — Mx* are generators of Galilei boosts. It is easy to show that
the condition

q¥i=y =@ — V1) ¥, _,
0 0

will be satisfied only if @ = 0. Hence we obtain the standard result ¢' = i#9/dp'.
In the relativistic spinless case the constraint 4 = 0 is of the form
A=pp,—Mc=0 (11)

where p =0,1,2,3, p* = g"p,, g = diag (+, —, —, —) and c is the velocity of
light. The non-zero commutators of the basic variables are

[x*, pl = —ifg*. (12)

The relativization of conditions 1—4 is not unambiguous but their straight-
forward generalization to the relativistic case can be as follows: First of all, the
Galilei transformations must be replaced by the Lorentz ones. Moreover, in 1
we must assume (x°, x), (p°, p") to form a four-vector and the constant ¢ must
be added to 3.

Now the conditions 1—4 (modified in accordance with the previous con-
sideration) reproduce Kalnay’s result {6]

7= X — pi(p") ' %,

On the other hand, if we omit condition 4 and require ¢' to be hermitian (with
respect to the corresponding scalar product), we obtain the Newton—Wigner
result [1]

. i o
h\ — g e ﬁ.@cvl_ No + Mﬁ.@ov N.

Hence the considered relativistic version of conditions 1—4 and the requirement
of hermiticity of ¢’ are not consistent.

I11. ,,POSITION* IN RELATIVISTIC QUANTUM MECHANICS

A proper formalism of the localization would exhibit the Lorentz covariance.
All physical quantities in the relativistic theory must posses a good behaviour
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under the Lorentz transformations. It means that they must be scalars, com-
ponents of four-vectors, tensors, etc. Since there are difficulties in finding some
four-vector the space components of which would represent three position
operators ¢', we conjecture that three quantities closely related to the non-rela-
tivistic position operators are oi-components of some antisymmetric tensor. As
will be seen later this approach represents one of the possible relativizations of
the non-relativistic position operator properties. Hence we assume

1) Quantities playing the role of position in relativistic quantum mechanics are
oi-components of some antisymmetric tensor g**.
i1) ¢*"is constructed by means of x*, p", M, ¢ and # only (we confine ourselves
to the spinless case only).
i) [¢*, A]=0
iv) In the non-relativistic approximation ¢* have to reduce to q=x—xpIM.
An antisymmetric tensor g** can be written in the form

1
¢ = f~—— (¥’ — x'p")
Mc
where f'is some Lorentz invariant operator which can be written in the form

Mc? 1 .

\M\A o xx, — wmcsﬁ :

(The tensor dual to (x*p” — x'p*) is excluded from our considerations because it
does not possess desirable transformation properties under discrete transforma-
tions).

Let us now consider the non-relativistic approximation. In this case we have
to replace x° by cx®, p° by Mc — p%c and moreover we have to neglect terms of
the type (...) p’/Mc* with respect to the terms (...). Then we obtain

&k
Pr_,
M

P’p,— M@ =0-p°+
%1 = —ifi =[x, p°] = if

~ . . ) .Nc i
—— (%' — x> x - L
Mc M
Since, in general, f does not reduce to a constant at the non-relativistic limit we
choose f= —1. So we finally obtain

1
g = I;E’n@}.ilkﬁs.

This result does not seem to be unexpected. In the non-relativistic case the
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position operators ¢' = x' — x°p//M are proportional to the generators of the
Galilei boosts acting in the Hilbert space spanned by solutions of the equation
@ + p'p"2M) ¥ = 0. Hence one may expect that in the relativistic theory the
operators playing the role of the position operators will be proportional to the
generators of the Lorentz boosts.

IV. CONCLUDING REMARKS

To summarize the results of our speculations we can say that quantities
playing the role of position operators in the relativistic quantum mechanics are
proportional to the generators of the Lorentz boosts.

The:presented formalism possesses at least two satisfactory features. Firstly,
it exhibits the explicit Lorentz covariance and secondly, the non-relativistic
concept of the localization naturally restores at the non-relativistic approxima-
tion. On the other hand ¢** cannot be introduced for massless particles and are
not hermitian in general.

Concluding this section we note that we confined ourselves to such q'(g°)
which did not depend upon an evolution parameter 7 explicitly. We conjecture
that if we should consider g'(¢°") explicitly depending upon 7 and if we should
find (under some plausible assumptions) a relation between 7 and time, we
should obtain the position operators in the Heisenberg representation.

We think that the non-relativistic concept of localiza*on (fouowing our
everyday experience) cannot be without drastic changes introduced in relativistic
quantum mechanics. One of the reasons for supporting this conjecture is per-
haps the following: In relativistic quantum mechanics there is no quantity
representing the o-component of some four-vector j* satisfying 0,/* = 0, which
would be interpreted as the probability density in finding a given particle at a
given point in general. However, this problem requires a more detailed investiga-
tion.
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O BO3MOXHOCTH ONPEAENEHWS MECTOHAXOXAEHUS YACTHIL
B UNQOHG TNIpHBEACHBI EﬁEAEEVﬁ Ha OCHOBe xO.—.OUEx HaeTcs NPEANOYTCHHE wo.:&aﬁ:&.z.

NPONOPHHOHANBHBLIN I CHEpaTopam JIOpCHIEBBIX Q%Qﬂow H CIIyXalllHM B KadecTBe oneparopos
NOJIOXKEHUS B PCJIATHBHCTCKOM KBAHTOBOI MCXaHHUKe.
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