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OC>m~-HOC—F-w-~Cz MODEL OF SMALL-SIGNAL DLTS
RESPONSE FROM —ZMCH>HOH-MH§OOZUCQHO-
INTERFACIAL TRAPS IN MIS STRUTURES

M. QNMZUMH_V, Bratislava

A model of the DLTS response from Em:_&on-mma_.nozaﬁﬁoq interfacial traps in
SnB_-mamc_ﬁonoEmoo:=a=n8~ (MIS) structures is proposed. The model is based upon
the assumption that at sufficiently high temperatures the time constant of the formation
of the quasi-equilibrium space-charge layer in the semiconductor is negligible in
comparison with the duration of the whole transient process investigated. A method for
calculating the current, charge and capacitance curves of the small-signal DLTS is
described for the case of n arbitrary discrete _.Eo:qmno-ﬁﬁ levels. Simple final for-
mulae and numerical results are presented for 5 < land n =2,

L INTRODUCTION

only to bulk defects, but it can also give some valuable information about
insulator-semiconductor interface states. For that purpose several modifications of
the DLTS were developed. The response of an MIS structure to an applied voltage
step can be recorded as a capacitance transient (C-DLTS) [1], as a gate-voltage
transient (at the constant capacitance — CC-DLTS) [2], as a current transient
(DLTCS) [3], or the released charge can be measured (Q-DLTS) [4]. Experimental
results of each modification of the DLTS deserve a careful theoretical analysis of
the processes which contribute to the measured signal.

response should comprise also the capture of carriers on interface traps. Although
there exist a few investigations concerning the capture (see, e. g, [1]), this case

—_—_—

') Institute of Physics, EPRC, Slov. Acad. Sci., Dabravska cesta, 84228 BRATISLAVA, Czecho- -

slovakia,

28

seems to be, unlike the emission [5], more complicated from the theoretical point
of view.

In many cases the capture of carriers may accompany or even prevail over the
emission. For example, if the applied gate voltage is such that the equilibrium
occupancy of a trap level varies rapidly between 0 and 1 with the change in the
equilibrium surface potential, the capture can play an important role at least in the
last phase of the transient process (at the end of which all the system of electrons
and holes reaches thermal equilibrium). As it follows from [6], this should be kept
in mind when investigating the small-signal response of interface-trap levels
located at the midgap of the semiconductor.

In the present paper we investigate the quasi-equilibrium model of the DLTS
response which is a generalization of the model suggested in [6]. Similarly as in [6]
we suppose that both the emission and capture may take place during the transient
process under investigation. In contrast to [6] we consider an arbitrary distribution
of interface-trap levels in the semiconductor band gap. The basic equations of the

integral equation for the change in the surface potencial is derived. This equation is
solved by means of the Laplace transform technique, and in the case of n arbitrary
discrete interface-trap levels, formulae for the current, charge and capacitance
modification of the small-signal DLTS are derived. Finally, simple formulae and
numerical results are obtained for n =1and n=2.

II. THE QUASI-EQUILIBRIUM MODEL

Similarly as in [6] we shali investigate the response of an ideal MIS structure to
an applied voltage step. We shall suppose that the insulator-semiconductor
interface contains traps characterized by the density N(E), which is defined as
follows : N(E)) dE, is the number of interfacial traps with energies from the interval
(E;, E+dE) per unit area, For simplicity, we shall consider only monovalent
acceptor-like traps. Immediately after the application of the voltage step to the

distribution depends on the following two basic mechanisms : the conductivity
mechanism (i. e, transport of free carriers) and the transition mechanism (i. e.,
emission, capture, generation and recombination of free carriers). We shall
suppose that both mechanisms in the bulk are sufficiently efficient to establish the
quasi-equilibrium distribution before the transient process due to transitions
through interface-trap levels can take place. Then, according to the Shock-
ley-Read-Hall statistics [7], the rate equation for the occupancy f, of an inter-
face-trap level at an energy E; can be written in the form
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where ¢ is time; &i(ey;), cylc,;) and n.(p-) are the emission rate, the capture
coefficient and the bulk concentration of electrons (holes), respectively. The
dimensionless surface potential v in (1) is defined as

e
kT
where T is the absolute temperature, @, is the surface potential, e is the electronic
charge, and k is the Boltzmann constant. We shall assume that the emission rates
and capture coefficients in (1) satisfy the well-known relations :
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functions f, and v in (1) are considered to be dependent on time and temperature.
Besides (1), the functions fi and v must satisfy the condition

=—-(Q(v)+ef N(E)f, dE)/ G+ kTv/e+ @ns (for 120), “)

where U is the gate voltage applied to the MIS structure at the time moment ¢=(

(4) together with (1) forms a system of €quations from which the funetions fi v
may, in principle, be calculated. Since (1) is a first-order differential equation with
respect to f;, its particular solution is determined by the initial condition

fitt=0)=f,,. &)

Provided that before the time moment t=0 all the system of electrons and holes
(free or captured) is in thermal equilibrium, the initial value fo; in (5) can be
considered as known. For example, f;; can be given by the function of the
Fermi-Dirac type

\e.”? +nxUAmu%+§¥u, (6)

where E is the Fermi energy and v, is the equilibrium value of v. The value 0
is determined by

U= —(Qvo)+e | N(E)fo; dE)/C, + kTvo/ e + Ouss, (7)
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where U is the gate voltage applied to the MIS structure before the application of
the voltage U, and fo; is given by (6).

By eliminating f; from equations (1), (4) and utilizing the conditions 5)—@),
one could obtain a nonlinear integral equation for v, Generally, this equation could
be solved only numerically. It is worthwhile to notice that in the particular case
when only a single discrete interface-trap level at energy Ey is present, the problem
of finding v can be simplified. In fact, in such a case, N(E) = NO(E; — E;), and
from equations (1), (4) we obtain the following first-order ordinary differential
equation :

(49 -2 o
dt/, kT G+ G(v)
where
Flv)=[U+ Qv)/ G~ kTv/e— Oms] (Gne e+ e,p. e¥ + e +e,) %‘T
T
+Gn.ev+e, 9

(here c.,c,, e., ¢, have the meaning of ¢,;, ¢, e, e, for the trap of energy Ey)and
G(v)=—(kT/e) 3Q.(v)/3v. (10)

Equation (8) can be solved for an arbitrary voltage step AU= U— U, by means of
standard numerical methods. :

With the function v(t, T) known, one can easily calculate the DLTS signal. The
current density j(t, T) can be calculated according to the formula

. — _GkT 3v
it H=-= (3 (11)
and the released charge per unit area is
kT
o, )= -2, 40, ). (12)

e

The capacitance of the MIS structure per unit area (measured by a small-amplitude
probe signal which does not affect the occupancy of the interface trap levels )is

(1, T)= GG()/(G+ C(v)) (13)
where C(v) is given by the formula (10).
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In order to obtain explicit formulae for the current, charge and capacitance
transient, we shall confine ourselves to small applied-voltage steps, i.e., the
fulfilment of the condition

Jlv—w| <1 (14)

oi(1— 0j ) ’ - '
D&.Hl\ Aae.\ v‘h Av(t') exp Ahao,Nv dt (15)
2

?u?+mv Av() - \ N(E) 4f, dE, (16)

where |
A=hi=for A0 =000, Com (o), Au=<AY (i

and

.M.J.H Gylls €70+ Cp. e+ 6, + o). (18)

According to (5)—(7) and ( 10), the initial condition for the function Av( t) can be
written in the form

ucavuimm\@ . (19)
From the relations (15), (16) and (19) we obtain the equation
Av(1)~ Av(0) = |b Q B exp ﬁlsﬂ dE) Au(r) dr 20)
where
- €N(E)f,(1 —~foi)
b= TG v ey @D

To find the solution of the integral equation (20), we shall use the Laplace
transform technique. It can be shown that for the function Av(r), the Laplace
transform Av(p) is given by the relation
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By substituting Av(t) from relation (23) into (11), ( 12), and (13), one can obtain
formulae for j(s, T), Q(1, T), and C(4, T). The applicability of these formulae
depends on the possibility of evaluating the integrals in (23).

Now, let the energy spectrum of the interfacial traps consist of n different energy
levels E,, E,, ..., E, with the corresponding trap densities N;, N, ..., N, so that
N(E)=3 N.(E — E.). In such a case the integral over E, can be replaced by the

k
Sum over j, and the integral over P can be evaluated by utilizing Cauchy’s residue
theorem. Thus, from formula (23) we have

dAu(?) < 1
= Av(0) 3 = ( +lv 24
at u VWM P(p) _m P (24)
where p; (j=1, 2, ..., n) are the roots of the polynomial
n X n m
P(p) = ~+MLmWr :A?r!v (25)
i=1 1 =1 Tow
pP+—
L

and P,(p) means the first derivative of P.(p). In formula (25), B is given by

__€Nfy,(1-fy)
PTG+ -

By utilizing the relation (24), from formulae (11), (12) and (13), we obtain the
following result:
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where

can be expressed in an explicit form. Then, utilizing the formula (27), the current
G0, ) =(G*+ C'(v(0, T))),

"o = 8C,(1,)/u,. (30) Mosm_Q \.HQ, T) can be expressed as follows:
. . . or n=1,
Numerical calculations of itt, T), Q(t, T), C(t, T) given by (27)—(30) require \
) q ) GkT 1
to know the values of the roots p(j=1,2, .., n)of the polynomial (25). For n>2, it = e Br Av(0) exp ﬁ a AP +Wmv % 1)
a_mm.m values could be found approximately by means of the numerical methods of
solving algebraic equations. In the case when n=1or n=2, the roots p(j=1,2) whilst for n=2,
. QS?@: HX Hv ; A _X Hv g
= +— +—)er' —(p,+— +—) e,
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Fig. 1. The set of J—T curves computed for various gate voltages U, taking Er—FE. = —0.54 eV, _
t=1 ms, Nr=10"m"? AU=1 mV. TH

Fig. 3. The set of j—T curves computed for various delay times t. (U, = —0.5 V, the other parameters
are the same as in Fig. 1).
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Fig. 2. The set of AC—
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Fig. 4. The set of AQ—T curves computed for various delay times ¢. The values of parameters are the
same as in Fig. 3.

T curves computed for various gate voltages U,
the same as in Fig. 1.

The values of parameters are
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In formulae (31)—-(33), w; and B (=1, 2) are given by the relations (18) and

320 T[]

T curves computed for various trap densities Ny (Uy=—0.5V, the other
parameters are the same as in Fig. 1),
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Fig. 5. The set of —
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Fig. 6. The set of AC—

T curves computed for various trap densities Ny.

The values of parameters are
the same as in Fig. 5.
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(26), respectively. Similarly as it was for j(t, T), accordin

g to (29) and (30) one
could easily write formulae for Q (t, T)and C(¢t, T)

» analogous to (31) and (32).

IV. NUMERICAL RESULTS AND DISCUSSION

To compute the small-signal DLTS curves, we set up a program which utilizes
the formula (32), formulae for the differencies AQ= Q(1, T)— O(2t, T) and
AC=C(1, )~ C(2t, T), analogous to (32), and also the relations 3)—(7), (10),

T T T T T T T T
w -0.44eV  -0.64 eV -0.54 eV

240

280

320 TK]
Fig. 7. The set of j—T curves computed for various interface-trap energy levels (U,=-0.5V,

, the
other parameters are the same as in Fig. 1).
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Fig. 8. The set of AC—T curves computed for various interface-trap energy levels. The values of

parameters are the same as in Fig. 7.
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(17)—(19), (26), (33). For a nondegenerate homogeneous semiconductor, the
charge Q,(v) in all the formulae is given by

O%Cv = sign ACV Awwﬂ,muvtu ﬁEBAmle _ C +ﬁsAne — c + Np In AM_‘;”..M\UVQCN“
(34)

where yp= Np/(n.—p.)—1, Np is the concentration of donors and e, is the
dielectric permittivity of the semiconductor. (In (34) it is assumed that the donors
may be partially ionized.) The capture coefficients ¢y, ¢, in (3) are related to the
corresponding capture cross sections by

Crj = OjUn,  Cpj = Oy, (35)

where 0, (9,;) and v.(v,) are the capture cross section and the mean thermal
velocity of electrons (holes), respectively. The contact potential difference Pms in
(4) and (7) is given by the well-known formula

GZmHIWAewIMO.Tm...Y (36)

where @ is the “height” of the barrier. The location of the Fermi level in the
semiconductor band gap is calculated, as usual, from the neutrality condition which
is assumed to be fulfilled in the bulk of the semiconductor.

As illustration, the DLTS curves were computed for the system Al/SiO,/n-Si
with @ = —0.05eV, Np =4.3 X 10*° m=, The thickness of the oxide was taken to
be 100 nm. For all the energies of interface-trap levels given below, the capture
cross sections of electrons and holes were given by 0,=2.5x10"*m? apd
0, =5 X107 % (300/ T)* m?, respectively.

IV. 1. SINGLE DISCRETE INTERFACE-TRAP LEVEL

The small-signal DLTS curves (j=T, AC-T and AQ-T curves) were
computed for a discrete interface-trap level positioned at the energy E;=E.
— 0.54 eV, which is near the midgap. One can notice that the energy E;~ E. =
—0.54 eV and the values 20,, 20,, where ¢,, 0, are given above, were chosen to
agree with the values found from experiments for the bulk impurity of Au in Si [8],
[9]. Although this choice may not correspond to any real interfacial trap, the
numerical results presented below make it possible to draw general conclusions on
the behaviour of the DLTS signal. Each set of the DLTS curves computed for

various values of some parameter shows a peak corresponding to the interface-trap
level.
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The dependence of the j- T curves on the gate voltage U, is shown in Fig. 1. One
can see that the height and position of the peak change nonlinearly with the
increase in the gate voltage U,. The position at which the peak is the highest does
not coincide with the position at which the temperature of the peak maximum is the
highest. The peak is the highest when the Fermi level is near the interface-trap level
and the trap is about half occupied. In the opposite case (when the occupancy of the
interface trap is close to 1 or 0) the height of the peak is negligible. The same

" qualitative features as those of the J—T curves can be seen in the corresponding

AC—T and AQ—T curves (see Fig. 2; the AQ—T curves are similar to the
AC—T curves and therefore omitted).

The dependence of the j—T curves on the delay time 1 (Fig. 3) is similar to that
for a simple emission since the response from the interface-trap level is an
exponential function of the delay time ¢ (see formula (31)). However, the value of
energy obtained from the j—T curves in a standard way (as for an emission from
a discrete-trap level) may considerably differ from the value of E; originally used
in the computation of these curves. In contrast to the j—T curves, in the case of the
AQ—T curves (Fig. 4) the height of the peak changes only slightly with the delay
time (and the same is true for the AC—T curves not shown in this paper).

The dependence of the j—T curves on the trap density Ny (Fig. 5) is a nonlinear
one. Although the height of the peak increases with increasing Ny as it is natural to
expect, its position does not remain constant and the peak shifts non-linearly with
the change in Nr. The last property is characteristic also for the AC—T curves
(Fig. 6), but the dependence of the height of the peak on N is not monotonous in

i [10% A

240 280 320 7 [K]

Fig. 9. The j—T curve computed for a system of two interface-trap levels, taking E, = E. ~0.54 ¢V,
E;=E —044¢V,N=N=5x10"“m ™, t=1ms, Uy=-05V, AU=1mV.
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this case, which is due to the coefficient C’y in (29). The corresponding AQ—T
curves (not shown in this paper) behave similarly as the J—T curves.

In order to obtain an idea about the behaviour of the peak with the change in
energy Er, the small-signal DLTS curves were computed also for various values of
Er— Ec. The peak shifts nonlinearly with energy Er for both the j—T curves (Fig.
7) and the AC—T curves (Fig. 8). As to its height, it changes slightly for the j—T
curves but remarkably for the AC—T curves. For the AQ—T curves (not shown in
this paper) the behaviour of the peak is similar to that for the J—T curves.

IV. 2. Two discrete interface-trap levels

The small-signal DLTS curves were computed for the system of two inter-
face-trap levels at energies E, = E.—0.54 eV, E;=FE.~0.44 eV with trap de-
nsities N; =N, =5X 10" m2. The greatest change in shape, in comparison with
the one-level j—T curves, , was found to be for the j—T curves (atwo level j—T
curve is shown in Fig. 9). The two peaks corresponding to the energy levels E, and
E, can be better resolved when the difference Aj= it TY—j(2¢, T) is computed,
and their heights and positions depend on the gate voltage U, (Fig. 10).

aj [10"Am"]

280 320 T (K]

Fig. 10. Two Aj—T curves for a system of two interface-trap levels, computed for the gate voltages
Us=—-0.5Vand U,= —0.6 V. The other parameters are the same as in Fig. 9.
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V. CONCLUSIONS

The quasi-equilibrium model presented in this paper is applicable to the
small-signal DLTS response from insulator-semiconductor interfacial-traps under
the condition that the transport and transition mechanisms in the semiconductor
are sufficiently efficient to establish the quasi-equilibrium distribution of free
carriers at the interface instantaneously as compared to the time scale of the
observed interacial transient process. This condition may be fulfilled at higher
temperatures when the concentration of minority carriers is such that the corres-
ponding Maxwell relaxation time is much smaller than the characteristic relaxation
time of the transient process. In the opposite case (at low temperatures) it is
hecessary to consider non-equilibrium distributions of electrons and holes which

the transition mechanism in the bulk of the semiconductor, the condition of validity
of our model may be fulfilled when the relaxation times corresponding to
transitions through bulk levels (which can be estimated similarly as for the interface
traps, by means of formula (18)) are much smaller than the characteristic
relaxation time of the observed interfacial transient process. This may be the case
of shallow impurities {(donors or acceptors) if one investigates interface trap levels
sufficiently deep in the semiconductor energy gap (for which the absolute values of
the differences between the shallow levels and the leve] under investigation are
much greater than kT).

— U107V
00 aU- 10V
~—aU=10" v

i/au [107avm?]

240 280 320 T[K)]

Fig. 11. The shape of current DLTS curves calculated for various applied voltage steps AU. All the
J/AU — vs T curves were obtained by solving the equation (8) numerically (U, = —0.5 V, the other
parameters are the same as in Fig. 1).
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dependences in Fig. 11 were computed by solving the differential equation (8)
numerically. One can see that for AU<1072V the change in the shape of the —T
curves is small (for AU =10~? V, the one-level DLTS curves presented in Section
IV are practically identical to those computed by solving equation (8)). At higher
AU, the slope of the low-temperature side of the J—T curves decreases, which was
observed in DLTS experiments, too. In view of our quasi-equilibrium model it is
a consequence of the non-exponentiality of the whole transient process at higher
applied-voltage steps.

From Section I1T it follows that the nonlinear dependences of the small-signal
DLTS curves on some parameters depend on the choice of the values of the
other parameters. If the choice is different from that given in Section IV, the
change in the dependences may, in some cases, be great. For example, it can be
shown that when the trap density N, is sufficiently high (N, = 10¥m~?), the
position of the peak corresponding to the interface-trap level with the other
parameters taken from Fig.1 is practically independent of the gate voltage
(which takes the values from Fig. 1).

From the relations (25)—(30) one can see that for the case of » interface-trap
levels (n > 2), the net DLTS signal is generally not a sum of one-leve] contribu-
tions although it can be considered as a superposition of n exponential transient
processes. An analogous conclusion can be drawn from the relations (1 1)—(13)
and (23) for continuous distribution of interface-trap levels. In principle, the
trap levels in our mode] may be arbitrary, with the only proviso that their
position in the band gap does not depend on the surface potential and no

trap levels.

Finally, it should be pointed out that our results are applicable, strictly speak-
ing, only to such DLTS measurements at which the initial conditions ¢)—)
are fulfilled. Usually, in DLTS measurements a periodical application of bias
pulses of a rectangular shape is used, the time interval between two successive
pulses being equal to the pulse duration, The repetition frequency of the bias
pulses has to be sufficiently low so that the system of electrons and holes can
periodically reach thermal equilibrium, as demanded by (5)—(7).
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KBA3UPABHOBECHAS MOJETb OTKIMKA, BBIZBIBAEMOTIO NIPOJOXEHMEM
CIABOTO CMTHAJIA K MIII-CTPYKTYPE
4 ITOIYYAEMOrO H3 NOBEPXHOCTHBIX JJOBYHIEK HA IPAHUIIE
AVSNEKTPHK-TIONYIIPOBOTHHK, B METOJIE CHEKTPOCKOIINH
TIYBOKHX YPOBHEN

B pa6ote npemioxena MOZCTL MNIA OTKJIMKA H3 NOBEPXHOCTHBIX nobyiex Ha
TPAHMLIC IH3NEKTPUK-NIOIYTIPOBOLHUK B MAIT-crpykrypax, HCCNENYEMBIX METOJOM
CNIEKTPOCKONMH riiy60oKuX yporHeit, Mogess OCHOBAHA HA NPEANIOIOXEHHUH, YTO
TIOCTOAHHAA BPEMEHH, XapaKTepU3yoLLas npouecc 06paszoBaHus cios OpocTpaHc-
TBEHHOTO 3apsajia B MOJYNPOBOLHKKE, OpHM OOCTaTYHO BBICOKHX TeMnepaTtypax
HUYTOXHO Majla MO CPABHEHMIO C IUIMTENLHOCTLIO BCEr0 paccMaTpusaeMMoro
npouecca. Onucax Takxe MeTOH I BBIHCICHHS KPHUBBIX, BHIPAKAIOMINX 3aBHCH-
MOCTE TOKOBOIO, 3apsaHOIG M €MKOCTHOrO CHMI'Hana B CHEKTPOCKONHM Iy6oKHX
YPOBHE# OT TemniepaTyps B Cliy4ae 2 NPOH3BOJIBHBIX JHCKPETHBIX YPOBHeii noBepx-
HOCTHBIX s106ywiek. Ipocrhie koHeuHbie GopMyIBl M unCieHHbIe pe3yabTaTh
NPUBCACHBI ANA 3HAYCHHH n = Ly n = 2.
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