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THREE-BODY FORCES AND LATTICE DYNAMICS
OF ALUMINIUM

CHOPRA K. K., EL KECHAI A..", Tizi-Ouzou

Modern theories based on pseudopotentials have supported the existence of
three-body forces in solids. A phenomenological model incorporating these forces is
used to calculate the phonon frequencies and Debye-Waller factor of aluminium. The
results are found to be in good agreement with experimentally measured values.

L. INTRODUCTION

Sophisticated pseudopotential models [1—3], for the lattice dynamics of
metals, although founded on a rigorous basis and very useful from a conceptual
point of view, are often extremely intricate with regard to their practical use.
Nevertheless these studies have provided vital information on the nature of
interactions in a metal. In the present paper we have adopted a phenomenologic-
al approach [4] to incorporate some of the results of pseudopotential theories to
develop a simple model for the lattice dynamics of metals and applied it to
calculate the phonon frequencies and the Debye—Waller factor of aluminium.

Pseudopotential studies [5] show that the energy of a metal can be regarded
as made up of three parts: (i) E,, due to a central core-core interaction; (ii) £,
due to the overlap of electron clouds: and (iii) E,, the volume energy which
represents the overall effects of the presence of conduction electrons and their
interaction with the core. Further, Brovman et al. [6—8] and Pethick [9].
also using pseudopotential methods, have shown that three-body forces play an
important role in solids and are essential to obtain the required equality of static
and dynamic elastic constants.

In the model presented here we have considered three types of interactions
corresponding to the energies E,, E, and E, and have introduced three-body
forces in the calculations relating to the last two.
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II. THEORY
I1. 1. Dynamical matrix:

Following the usual theory, the phonon frequencies corresponding to a
wave-vector k are given by the secular equation:

ID(k) — 4mMV| =0

where M is the ionic mass and D(k) the dynamical matrix of order 3 x 3 for a
cubic metal. The dynamical matrix elements D are, in the present case, given
by:

D, = D;+ D} + Dj )

where the superscripts c, r, and v refer respectively to the energies E,, E, and E,;
and i, j denote the cartesian directions x, y and z.

The energy E, is due to core-core interactions. Pseudopotential studies of
Pick et al. [10] and Resolt et al. [11] have shown that interactions among
cores are essentially central. We have also, therefore, supposed this interaction
to be purely central and considered it effective in the nearest neighbours only.
This is then calculated in the standard manner [12]. The corresponding matrix
elements are found to be

D5 = 2a2 — C(C, + C))]
DS = 2aS.S,

where S; = sin (nak;); C; = cos (mak,); “a” is the lattice constant and k; the ith
component of the phonon wave-vector.

The energy E, is due to the overlap of electron clouds. Such an overlap is
known to lead to a break-up of the sphericity of the charge distribution resulting
in non-central interactions [13, 14] among electron clouds. We have considered
these non-central interactions to be of a three-body character which can be
phenomenologically described by the CGW type angular forces [15]. We have
modified the original CGW forces to include a third type of triangles on the lines
of Awasthi et al. [16]. These additional triangles are equilateral and are
formed by an atom and two of its first neighbours situated on two mutually
perpendicular planes. The corresponding matrix elements obtained are the
following:
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where y,, %, and ¥, are the three angular force constants corresponding to the
angles of 45°, 60° and 90°, respectively, of the triangles considered.

The volume energy £, is linked to many-body interactions. We follow the idea
of Sarkar et al. [17] who have developed this energy in terms of the volume
strain 4 around the equilibrium volume ¥,. The term of interest in the expression
is 1/2 K, V,A’, where K, is the bulk modulus of the electron gas. Interpreting A
as a local strain one can express it in terms of the coordinates of the ions of the
region. The region considered for the purpose is again confined to the nearest
neighbours only. As the term in A is quadratic, the sum over the twelve nearest
neighbours compresses the many-body interaction into an effective three-body
interaction. The corresponding matrix elements are:

K.a

En»%ﬁ+€~

K
= SS(Cit GG+ C.
The sum of relations (2), (3) and (4) gives the total matrix elements D, and D,

of the dynamical matrix.
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II. 2 Debye—Waller factor
According to James [18], the exponent 2W of the Debye—Waller factor
at a temperature 7 is defined by:
h 5 (AK.e)
MN % Dy

2W =

va + J 9
2
Here M is the mass of the atom, N is the total number of unit cells in the crystal,
AK is the difference between the initial and the final wave-vectors of X-rays, o
is the frequency of the phonon wave-vector k and polarization j, e, is the
polarization vector of the kj lattice mode and (n, is the average occupation
number of phonons in the mode kj. For monoatomic cubic crystals, the factor
(AK. e,;) can be replaced by its average value so that equation (5) takes the form:

8% AN sin’ ®v 5 L coth A @ﬁv @

W = —— (—
IMN\ ¥ /% o, 2K,T.

where K} is the Boltzman constant, @ the glancing angle of incidence and A the
wave-length of the incident radiation.
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I1I. METHOD OF CALCULATION

The matrix elements given by (2) to (4) contain five parameters — « for the
central forces, y,, 7, and y, for the three-body angular forces and X, for the
volume forces. These have been determined from three elastic constants and two

zone boundary frequencies. The input data and calculated parameters are given
in Table 1.

Table 1

Input data and calculated parameters

Input Data Model Parameters (N/m)
Elastic constants:
A_O:_ zguv
C;:10.678 a:25.310
C,:6.074 nja:—0.114
Ch4:2.821 nja:—0811
Lattice constant:
(107'%m) 4":4.05 y2/a*:0.323
Ka:—2932

Atomic mass:
(amu) ‘M':26.9815

Zone boundary
frequencies
(THz)
v,(100):9.63
vr(100):6.63

For the calculation of the Debye—Waller factor the first Brillouin zone was
divided into 8000 uniformly distributed points. The frequencies were calculated
for the 262 nonequivalent points in the 1/48 irreducible part of the first Brillouin
zone assigning proper statistical weight to each such point. The contribution of
the zone centre for the zero wave-vector has been calculated as suggested by
Baron et al. [19). The results are compared with the experimental data in
terms of the temperature parameter Y given by

wa
Y = log,, exp ——— (W, - 2W) )
sin” ©

where 21, is the Debye—Waller factor at the room temperature (T, = 293°). It

i1s readily seen that Y depends only on the frequency spectrum and is indepen-
dent of @ and 4.
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IV. RESULTS AND DISCUSSION

The calculated phonon dispersion curves in the principal symmetry directions
are shown in Fig.1 along with the experimental points of Stedman et al.
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Fig. 1.: Dispersion curves of aluminium in the
principal symmetry directions. Experimental
points along with the corresponding uncertain-
ties are of Stedman et al., Ref. [20].

[20]. A glance at the dispersion curves shows the good agreement obtained with
the experimental values. The discrepancies are within 3%. The usual frequency

distribution function G(v) is shown in Fig. 2.
For the Debye—Waller factor, the calculated variation of the parameter Y
with temperature is depicted in Fig. 3 along with experimental points (21-—24).
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Very good agreement is obtained up to 600
anharmonic effects and thermal expansion
responsible for the observed discrepancies. At
2W depends on the frequency spectrum as M
Fig. 2 thus contributes much more at high te
peak. A knowledge of the Gruneisen param
-m.onjoznv\ peak and of its variation with temp
to estimate the. resulting influence of thermna

tion intensities and help in accounting for ¢
temperatures.

erature could possibly enable one
1 expansion on the X-ray diffrac-
he observed discrepancies at high
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Fig. 3. Temperature anbo,:&onoo of the parameter Y. Experimental points are due to Chipman
(®), Flinn et. al. (0), James et al. (A) and Owen et al. (+).

Za<on5m._ommw our Eo.am_ gives a fairly close agreement with the experimental
results and justifies the importance of various interactions considered. In par-

ticular, the many-body volume ener i
. : 8Y appears to be effective] 11
by the resulting three-body forces. Y fepresented
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°K. Beyond this temperature the
are no more negligible and are
high temperatures, the exponent
V> the low frequency peak of

mperatures than the high-frequency
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TPEXYACTUMYHLIE CHUJIbI U JUHAMMWKA PEMETKH AJIIOMUWHUSA

OONU@ZOIEE@ TEOpHUH, OCHOBAHHBIC HA NICCBAONOTCHIIHANAX, MPEANONATralOT CYLIECTBOBAHUE B
TBEPALIX TE€JIAX TEXYaCTHUYHBIX CHII. B ﬁwmcﬂa HCIONTB30BaHA %IOZOEOhOﬂEJﬂO%NN Monenp, yuu-
THIBAIOWIAA 3TH CHIIBI, KOTOpAsS MO3BOJACT PacCYUTATh %OEOE:EO YacTOTHI 4 GNNHOU bn@w.m'
mw&bbnﬁm B AJOMUHHH. Ommwﬂv\v—nﬂmou 4YTO TEOPECTHYCCKHE DE3YyNbTAThl HAXOAATCA B XOpOIUCM
COrJIACHHM C IKCIICPHMCHTAJILHBIMHU 3HAUMCHUAMH COOTBCTCTBYIOUINX BEJIMYHH.
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