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ON A FACTORIZATION OF THE KINETIC ISING
MODEL

B. MAMOIJKA'), Bratislava

L INTRODUCTION

In order to solve the kinetic Ising model it is often necessary to factorize the
probability distributions of the states of the whole system by means of the
probability distributions of the states of its suitably chosen subsystems. There is
a variety of more or less physically or mathematically justified factorizations (see
e.g. [1]). In this article we study the factorization P(M(S)) of the probability
distribution of the states M(S) of a spin system (s=1lor — 1) on a lattice M. The
distribution is factorized by means of the probability distribution P(x(S)) of the

the corresponding equilibrium Hamiltonian.
Performing the calculations with out factorization we found two important
results :
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1. The necessary condition imposed on the structure of the set X which enables
to obtain the correct equilibrium solution using the approximation based on our
factorization,

goes to the corresponding equilibrium Hamiltonian for 1.

We have centred our attention on the kinetic Ising models in order to gain
a deeper understanding and justification of some used factorizations, These models
femain very important objects for the theoretical Investigation of the Ising systems.
Originally, some simple kinetic lattice models have been studied in order to

describe adsorption and desorption of gases on the surface of crystals [2], [3]. Only

the methods using computer simulations of the growth of a new phase during the
phase transition [13, 14, 15].

II. FACTORIZATION
To obtain our factorization we postulate the following axioms :

A,. The probabilities P(x(S)), xe X are known.
A,. There are known all the momenta

3~H>.WMV m s:P(M(S)), ze X' (1.a)
X' ={z]zcx, xe X} (1.b)

generated by the probabilities P(x(S)), xeX. The index i numbers the lattice
points. The axiom A, is equivalent to A,.

B. We have no information on the probabilities P(y(S)), ye¢X'.

C. The missing information on the probabilities P(y(S)), y¢ X', is replaced by
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i PO =EMS), yem (2.)

Where F,(M(S)) are functionals depending generally on all the probabilities
P(z(S)), z& M. In the majority of cases we can not solve exactly this system of
equations. To solve Eq. (2.3) approximately we must take only some subsystem of
the system, for which we write

a1 PN =E(M(S), zex (2b)

where X is the suitable set of clusters on M mentioned in the axiom A,. The
functionals F(M(S)), xeX still depend on all the probabilities P(y(S)), yéX'
which do not appear on the left-hand sides of the Egs. (2.b). In order to make the
system (2.b) closed we have to express all the probabilities P(y(S)), y¢ X' only by

through the axiom A,. Thus we have obtained the selfconsistent method for an
approximative solution of the system of the kinetic equations (2.2). The choice of
factorization (e. 8. using the axioms A.—C.) and the choice of the set X (e. g. the
set of all pairs of nearest neighbours) create the basis of the approximation applied
to the solution to the given problem.

In order to find the actual form of the wanted ?Qoamm:.ou_ we use first axioms
A,., B, and C. We look for the maximum of the entropy

W= P(M(S)) In P(M(S)) 3)

M(s)

satisfying the condition (1.a). Then the variational method gives

WA?R.&VHQ@& M q | L \ Z, . (4.a)
where Lagrange’s multiplicators are given as follows
dln Z
m,= TP (4b)
Z= ﬁ z @. .
>W@ exp NWQ ma (4.0)
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From the formula (4.a) it also follows directly that

if zeX' |
otherwise.

2 [T s:In P(M(S)) = A% (5)

M(S) iez
We can obtain the same equations by means of extremalization of entropy (3) with
respect to the unknown momenta m,, z¢éX'. In this procedure the following
expression of the probability distributions is used

P(M(S)= 3 ] m (1+ sit) EESL u@z (1+ Ms..w..+.Ms§.@.+v‘

M(T) ieM 3]
(6)

where N is the number of lattice points.

The exponent in the formula (4.2) is a Hamiltonian of the Ising model with the
interactions — kTq, of the spins within the range of the cluster ze X’. This fact
points to the correspondence between the applied approximation — namely the
choice of the set X — and the Hamiltonian of the studied system in its thermal
equilibrium. Let this Hamiltonian be of the form

H=~3 K] @

ue U icu

The applied factorization (4.a) enables us to obtain an approximative solution
achieving an equilibrium state only if the following condition is satisfied

UcX'. 8)

Only in this case is it possible to require the satisfaction of the following conditions

lim q.(f)= ~ K/kT for all ueU )

t— 4+

lim q,(f)=0 otherwise.

1— 4

.mo:::_m (1.b). The choice of 3 set X larger than required by conditions (8) can

It is sometimes more convenient to use another expression for the factorization
(4) based on the axioms A,, B and C. In this case we use the conditions

»UCAM%H.WV P(M(S)), xeXx (10)
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instead of the condition (1.b), x is the complement to the x in M. In this case the
variational method gives

P(M(S)) =exp ﬁM Ei (11)

xeX

or

P(M(S))= Eximv. L(S) =exp [L.(8)], (12)
where Langrange’s multiplicators L,(S) depend only on spins in the cluster x.
Since, e. g.

L(S)+ L(S)=LAS)+ LYS)
thMv = HRAMV + Cu)wA.wv
N\RMV = HQAMV - SS!A%V,

the functions L.(S) are not unambiguous. Here Ueny(S) is an arbitrary function of
spins on the interaction of sets x and y. The expressions (4), (11), (12) are
equivalent to each other. That can be easily shown by expanding L.(S) into the
spin series.

The most eirect way to find the explicit form of the factorization (4.a) is to
calculate g,, ze X' as functions of P(x(S)), xeXor m,, ze X'. As we shall see later
on this procedure is too cumbersome.

We are able to solve it successfully only in one dimension and for special
quasi-one dimensional models. In spite of this fact it is possible to derive some
generally valid properties of the factorization for any dimension.

Let us define the neighbourhood B, of the cluster u as follows

B.=C,—u (13.2)
C=vu z (13.b)
x.={z]znu#*9, ze X)}. : (13.¢)

Thus the neighbourhood B, is the set of all the lattice points which do not belong to
u but belong at least to one cluster z€ X such that znu#@. This neighbourhood is
unambigously determined by the set X. If the set X is chosen as the smallest,
satisfying the requirement (8), then the neighbourhood B, represents the range of
interaction of spins belonging to the cluster u.

Let us study the properties of the conditional probability P( u(S)|(uuv) (8))
where unv=0. Using the definition (13) and the factorization (12) we obtain
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wAzAmv_A§VAmvvu5@%?]5@7 > P(M(S)/ S p(Mm(s)=

e} )
(14.a)

2w/ s 1 4(8) = g((uuB,,)(s))

v(S) xeCy,,. T (uov)s) yeCuiu
This formula can be written in the form

PO = 9((uuB...)(8) P(aTw) (5))
and by means of Summation with respect to the spin states D.Ceav we obtain
9((uu)(8)) = P((uu B...) (9))/P(B...) (S)) = P(u(S)|B...(S)). (14.b)
Inserting (14.b) into (14.a) we finally find

PuS)I(uon($))= Pu(s)[ B, (). (15)

B.... In the case v=0 formula (15) implies
P(u(S)| a(S) = P(u(s)| B,(5)). (16)
Let us have the following decomposition
M=aubyu ... Gyuuy (17.a)

of the lattice M where a, b, - U, U are mutually disjunct sets of lattice points.
Then we can write

P(M(8)) = P(a($5)| a(5) P(b(8)|(aUb) (8)) ... x
( 17.b)

X P(u(S) (aub ... v (S)) P(v(S))
Inserting the approximation (15) into the exact formula (17.b) we obtain

P(M(S)) = P(a(S)| B,(S)) P(b(S)|B..o(S)) ...
w?a:wz?im:w?az.

mozow we see that in our approximative approach the factorized probability
contains conditiona] probabilities depending on much smaller clusters than those in
the exact expression (17.b). The factorization (18) does not depend on the used
form of the decomposition (17.a) since it always is reduced to the mutually
equivalent forms of factorization (4, (11),( 12). But this reduction is almost always

(18)
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the theoretical one which is achieved by means of the formula (14.a). This is due to
the problems connected with the calculation of L(S), resp. g,. Only in a few very
special cases the factorization (18) is the same as the formula (12) which can be
effectively applied. The size of the neighbourhoods occurring in the expression (18)

A suitable choice of the decomposition (1 7.a) might sometimes lend to a useful
form of the factorization (18). Let us consider a d-dimensional lattice. A position
of a lattice point is described by the vector (ky, ko, .., k) where k, =1, ..., 0. The
set X is chosen so that any cluster xe X lies in a layer with k + 1 lattice points in the
direction of the axis k,, i.e. i = 1=k + 1 where i is fixed for a given cluster and & is
fixed for all clusters xe X We use the following form of the decomposition ( 17.a)

M=0 g (19.2)
i=1
Q..”A\ﬁ: \ﬂNu wrassy; Nﬂth Nﬂ_”mvu

i. e. the lattice Mis decomposed into monoatomic layers in the direction of the axis
ki. Then the needed neighbourhoods are of the form

mwn_c...cs,m GV Ul I=1, sy n—k. AHOUV

In what follows we will suppose that there is valid only the sign of equality in the
expression (19.b). Such a casual enlargement of neighbourhoods might not make
the approximation worse. Inserting (19.b) into (18) we obtain

n—k-—-1

P(M(S)) = m P(a(S) (i ... ans) (S)) P(a,«u...ua,) (8)=
(19.¢)

~1T Ptav...va.) (5) /T P va.) (5)).

j=2
This formula is convenient to apply in the calculations if the following condition is
valid
AGVaaV.. .VaneX; i=1,.. n—k. (19.9)

Namely in this case we know all factors appearing on the right-hand side of the
euation (19.c) according to the axiom A,.

In the one-dimensiona case the set g; is reduced to the ith lattice point and the
set X contains all chains of k+1 neighbouring lattice points. Hence the formula
(19.c) becomes as follows

P(si, ..., s)=]] P(s, ..., Seek) \ T 2, .. Sierc). (20)

| i=2

All factors in this expression are known.
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If the lattice has no free ends in the direction of the axis ki or it the set X does
not contain “‘a sufficient number” of convenient clusters “spread” over the whole
lattice in the directions perpendicular to the axis k;, in order to fulfil the condition
(19.d) we do not know the factors occuring on the right-hand side of ( 19c¢) without
the combersome calculation of L(S), xeX or 9> 2€X'. These problems will be
demonstrated by the following examples. .

Example 1.: Let us have a one-dimensional lattice. Its end points are nearest
neighbours (i. e. k= 1). Then the needed neighbourhoods are as follows

mn.C:.Ca.,” Q-...:CQ-: i= H. ...n IIN
and from the formula (18) we have
n-2 n—-2
NVAM: ceuy h:v” : wﬁh.,u Sit1, h:v\: MUAM? .w:v. ANHV
i=1 =2

There is not known any factor on the right-hand side of (21) according to axiom B,
For instance in the simplest case of n=3 we obtain a cubic equation which is very
complicated to solve.

Example 2.: Let us have a two dimensional square lattice with 3 time lattice
points. Let the set X contain all pairs of nearest neighbours, i. e, X= {11, 512), (514,
$21), ...}. The formula (18) then reads :

muﬁu:u veey .wuuv = WAM:T,S, hu_v :u?ﬁ_.r? 821, .wqu Tﬂa_u_u,ur 822, ,quuv x
X mvmu.u: 522, $23, uﬁv mumnﬁ_,mue 831, .nuuv mu?nu_.m:. $32, uuuvx Awwv
X muAhuLhunu .wuwv Mvﬂhu&. huuv.

Also in this formula we do not know directly any factor except the P(s3;, 555), which
cancels with the same term from the preceding factor according to the definition of
the conditional probability. Thus it is necessary to solve 21 nonlinear equations

(4.a).
III. TEST OF FACTORIZATION

Next we will test our factorization. For this purpose we use the exactly solvable
version of the Glauber model [17]. It is the linear kinetic Ising model without
external field with transition probability

S\AI h..—h..‘ Si—1, MILV\(W! ﬁH 'W .w..A%T-. + M.I.—vg u\”m—.- ANNAV ANWNV

and equilibrium states equal to that of the corresponding Ising model with the

Hamiltonian
H=-K M SiSie1. (23b)
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Its time development is given by the following system of kinetic equations

% m(i)= — m(i) +w§:| D)+ 3ym(i+1) (24)

d . . A B N )
mms?:unus?b+m§?:_.:+m§?+r:+

WQ\ST.. i— C+WQ§Q, j+1) ..,

where
m(i)={(s), m(i, j)= ().
The solution to this system is
mi, )= 3 m(n;0)L.(y)
mi, j, = mGi, )+
e 2 m(p, r; 0)~ m=(p, NI (v L (y1) - (25)

p<r
~ AL (y) m(p, )= R-1; R=h K,

where m*(p, r)is th equilibrium value of m(p, r, t) and I(x) is the Bessel function
of an imaginary argument. Supposing that the initia] values are of the form

m(i;0)=mo; m(i, j; 0)=(R')1; R' = K, (26)
we obtain from (26)

m(i; ) =moexp [—(1-y)] (27.a)
o o) = 2(y' ~y) ~372
m(i, i+1;t— + ) -+G|:\CGIZ\C 4]v]o (27.b)
exp (=2(1~|y])ty')=th (2K). (27.¢)
we will compare the exponent
. =2(1-]y]) (28)

of the exact solution (26.c) with the corresponding exponent q, of the approxima-
tive solution

m{f =R+ ¢ exp (~ )

obtained by means of the factorization (20) for given k.
We assume translational invariance of the momenta, i. e,

m(i, j, ..., Ky=m(1, j—i+1, v k—i+1) i<j..<k (29)
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Thus we write
m(i)=m(1), m(i, +i+1)= m(1,2), ... (29.b)

The assumption (29) is justified namely for t —» o, i. e. in the neighbourhood of
thermal equilibrium. The time development of this simplified model is given by the
following equations

LD 1~y m@1) (30.)
t
%_Q%I Do om@, 1+1)+ ym(L, D+ ym(1, 14+2); m(1, 1)=1;

(30.b)
1=1,2, ..

The solution of (30.a) is exactly the same as that of (27.b).

The system (30.b) determines among other facts the exact form of m(1,2). In
order to obtain an approximation of m(1, 2) with the help of our factorization we
consider first k equations of the system (30.b) for I=1, ..., k. In this restricted
system, there is only one undetermined quantity, namely m(1, k +2), which must
be factorized. In our choice the set X contains all chains of k+ 1 mutualy
neighbouring lattice points. The expansion of nonlinear factorization of momentum
m(1, k+2) to the first order in deviations from equilibrium is as follows
(Appendix) :

m(L, k+2) =R~ Ri{m(1, k)~ R*"| + 2R [m(1, k + 1)-R4.  (31)

By use of (30.b) for I=1, ..., k and (31) we obtain

MMWH —-2(1-yR)x, for k=1 (32.a)
d
% =~2x+ yx,
QRN
QIN =yx;—2x,+ YXs3 mwM.Uv
QRT_

dr = YX-2— 22X + VX

mlw»n (1~ R)x—2(1-yR)x,; k=23,
(32.¢)
bnSGL+:|3§L+h m*(1, I+ 1)=R".
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Now, we can easily find the following €xponents a, for k= 1,2 3
a=2(1-R)=2V1— y?
B=2=yR~[y| =1~ |y + VIP

1 1
QuHNIM YR—|y] Nw~+w (33)

%= =2(1-]y])
= mZ a2 ¢,

where the equalities hold only it ,=0 or [y|
form of the equations (32.b) and from the
converge to the exact valye 0. with an inc
clusters contained in the set X

WH (see Fig. 1). We can infer from the
Ineguality (33) that the €xponents q,
Tease of k i. e. with increase of size of

NIt

Fig. 1. The dependence of the parameter a; on
v-th 2K in the approximations characterized by

k=1,2 3. The straight line ¢, corresponds to the
exact solution.

IV. CONCLUSION

As has been shown, the studied factorization is actuall

in the one-dimensional case. According to the formula (22) our factorization
means the following approximation of the conditional probability

Y convenient to apply only

NUA%LM.#: oo Sitvks Sivken, ...v”WA,m.._h.#r ceey m..i.v Au&v
in the one-dimensional case.




second is the structure of the set X which determines the probabilities according to
which the factorization is to be done. This correspondence is the consequence of
the physical requirements which requires that it must be possible to achieve the
correct equilibrium state when the factorization is applied. It is represented by the
necessary demands imposed on the set X by the formulas (7), (8) and (1.b). In an
approximation based on such the factorization the behaviour of the studied kinetic
model is at any fixed time such as if the system were in the state of an instantaneous
equilibrium corresponding to the Ising model with the Hamiltonian

~kTH()= > () [] s. 35)

Axioms A, B, and C and the requirement of a correct thermal equilibrium are
evidently not sufficient to determine an applicable factorization in more than one
dimension. There ought to be added some further physical requirements to be built
into the probabilities of states on spatially separated clusters regarding the given
type of the spin interaction.

Concluding I should like to express my gratitude to Dr. Anton Surda for valuable
suggestions and helpful discussions.

APPENDIX

The factorization of the momentum m(j, j+ p) with respect to the momenta on
the nearest smaller clusters is given as follows

SC. .~.+Nuv” M @h??muﬁ@.. 5535 .@.+vl~v~UAh~.+_. ceey ,&.+vV\ WAMT.T ey m~.+ul_v, A\va

Sjhoeor Sjap

where the probabilities on the right-hand side are expressed through momenta by
means of formula (6). We have to expand the nonlinear quantity (A1) to the first
order in the deviations

X =mi, j, ..y~ m(i, j, ..) (A2)

of momenta from their equilibrium values. The equilibrium values are easily
calculated by means of the transfer matrix method [16]. This method also allows us
to find the following equilibrium probabilities

(s, ..., @.vuwﬁ cosh K)™U=*D exp (K(sisisq +... + 5-18))  (j>10). (A3)
The wanted expansion is of the following form

5ie= 3y 3 (FHLLED) (Ada)

i=1 zeM; QSN

’
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where

M= {z]z={j}uv, veC}
M= {zlz={j+p}uv, vew (A4db)
Mi=V={v]vc{j+1, <o JHp~1}}.
With the help of (A1), (A3), (A4) and the formula
3 .
3m P(s;, ..., 5)=2-U-i+n I s, (A5)

lez
if z< {i, ..., j}, othervise =@

which is the consequence of the expression (6), we have

om(j, j+ p) 5 :
A ®5~ v«.nm:_”.z —MN”A\..\nTlev

=0 othervise

w -u .+ 1
AEV LR z=(j+1, 4 p)

am,
A
= othervise (46)
m(j, j+p) _ . o
A QSN VG.umgullzN ;.N”ﬁ.\uf.,—«.\n.nﬁuluv
=0 othervise
Thus we obtain
Xj, j+p= wnk?..?vn_ + R(x; et Xy i) ?c,. i=0) (A7)
and in the case of translational invariance
X1, pe1 = !W~HH.VI—+NE~.3 A.x;;“cv. Amv
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