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PIEZOELECTRIC HALF SPACE PROBLEM WITH
GENERALIZED THERMAL COUPLING

Sm. SANJUKTA NANDY"), Calcutta

A simple model of generalized Qn.,:.oumoNo@_mn:,EQ is used to investigate one-di-
mensional disturbances in a piezoelectric half space under certain conditions. Short time
approximate solutions are deduced and discontinuities in the mechanical, thermal and

stress fields gre analysed using the Laplace transform technique, Dtimately, some of the
results obtained have been plotted graphically.

ITIPOBIEMA NBE303JIEKTPHIECKOrO HNOXYIIPOCTPAHCTBA
C OBOBMEHHON TEPMHYECKOH CBA3BI0

1, INTRODUCTION

The theory of thermoelasticity which takes into account the time required for the
acceleration of the flow has aroused much Interest in recent years. This theory is

ete, deserve mention.
As far as the present author is aware very few attempts have been made to study

polarizable media in general, and piezoelectrics in particular, taking into account
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boundary surface is insulated.
(ii) Plane boundary is rigidly fixed and subjected to instantaneous heat flux.

2. FORMULATION OF THE PROBLEM AND GOVERNING
EQUATIONS

0i = Cyutu — €Dy — ;T
m..” ‘N..\.»m\»l*u@..\.plgﬁn ANHV
S= a6+ oD, + T,

Equation of motion

0l = gy, ;. 2.2)
Equations of electrostatics
D=0, E=- U, (2.3)
Equation for entropy production
.N‘pw.” —4qi ;. AN.A.V

Fourier’s law for heat conduction
9+ Ayg= - K,T, 2.5)

where g is the density of the piezoelectric material, u, oy, ¢, E, D, g; and k; , are,
respectively, the components of displacement, stress tensor, strain tensor, electric
field, electric displacement heat flux vector and conductivity. S is the entropy and T
is the temperature. Cints €y, by are, respectively, the elastic stiffness components,
piezoelectric constants and dielectric _.Euo::omc_:Q constants. a;, ¢ and a etc are
thermopiezoelectric constants. A, are the thermal relaxation constants.
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One dimensional equations

Since the present problem is essentially one dimensional in nature, the corres-
ponding one dimensional equations obtained from the above system of equations
can be put in a very convenient form using the following dimensionless parameters

(D (),

(D)) a o-azm

E
aTy’

(2.5a)

E=

where g, is the initial density of the piezoelectric half space.
After some manipulations, the linearised one-dimensional equations reduce to
the following

qnwlmn c® (2.8)
. 5 szu P (2.9)

where £=a, To/cu, g=avaly, e=ey/q T,
Now the equations (2.6) to (2.9) will be solved under the following two sets of
boundary conditions.

The limiting conditons corresponding to the two cases (i) and (ii) mentioned in
the introduction are the following

() a(§, Do = 0o H(7)
Q.Am‘ ﬂvmns =0

=0

WlmwAm, .&_Touo
O(§, av_mus
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(&, 1)1),m0=0
£>0

S2(E om0

Eﬁm~ ﬂv«no =0
E>Q

M’M&aﬂmu ﬂv—«no”O
(i)
ulE )=0 at E=0

wlm (& Dlsmo= — G45(2)

(€, )e=0

5 £>0
52 (& Dlemo=0
=Amv ﬁvnlc "O

£>0

Wl.«“ﬁmu .Hv_nﬂe”O

3. SOLUTION oF THE PROBLEM

,~.,o Rn:..::o the solution of the problem we introduce a thermoelastic potential
P in dimensionless form such that

(1) @e_o
®|Amv AmmN m (32)
_ 3o
=5 (33)



It may be easily verified that the function & satisfies the fourth order partial
differential equation

3 3 ¥ &
Tmﬂa:lmé 3Er 3E%t T30 T N3p

where & =ge. Now taking the Laplace transform of parameter p the above
equation simplifies to the following

caﬁlgncnemn*: QN&"O Aw.@v

~(1+g) g P=0 (3.5)

where
au=(1+7+ atw)p*+(1+¢&)p
a=p*+ pt.

@ is the Laplace transform of ® and D=d/dE.
Since the medium is semi infinite in nature @ — Oas £ — oo, Consequently the
solution to the equation (3.6) can be written in the form

DP=A, e+ A, et 3.7)

A; and A, are two constants to be obtained from boundary conditions of the
problem. m; and m, are the roots of the equation

(m?*)’~ a,(m») + a,=0. (3.8)

Taking the Laplace transform of the equations (3.1) and (3.2) we find i = D& and

O=(c/1) * D*— W vNW & substituting the expression for & given by equation (3.7)

in the above two equations we find
~M = s S~>~ Oli.m e 5N>N Oi:.mm AW@V
®HW25mlﬁ~: A e mE, (3.10)

Using the relevant boundary conditions corresponding to case (i), we find the
following two equations for the constants A, and A,.

o/p’= A+ A, (3.11)
>~5~A5w!ﬁuv+>~5~A5wlb~v”o. (3.12)
Solving the equations (3.11) and (3.12) we find

_ ~ gymy(m3 - p?)
p*(my— my) {(m, + m;)? — m;m, — p?}

A,
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and
A= Gom(mi— p?)
=l op)
P {m(mi— p?) “m,(mi= %}

Similarly for the case (ii) we find the following two equations for the constants A,
and \»n.

Ay + Aym, =0 (3.13)
Ooe={ Aimy(mi~ p>) + Aymy(m3 -p)}. (3.14)
Solving the equations (3.13) and (3.14) we find
A=~ Oje/m{mz— mi}and A, = Oge/m, {m2 - m3).

Since we restrict our analysis to small values of time, we determine the roots rm,, m,
of equation (3.7) in the form of a series in ascending powers of (1/p).

S~“h¢ﬁ+h~+§~\ﬁ+...

where my=bop+b,+b,/p+ ...

1
§HM A +N1\~v5+9INQM\JSV (3.15)

a

uwﬁ (bt 1/7?) | (b~1/2)
4l +217y” :TNdJL

Ly 1
2 16 dw\u AbIMﬂuavSl.Q_+Nd“\uv:~wl

1 \2 1 \2
A~c+.ﬂv ANcl. :Nv
1
(L+2T g oy

QLTA 1 1
ule ﬂw\u :_..TNﬂ“\nv:N Q_Iwﬁwbvnbw.*.

H m
L AT%V‘A,%V
ﬂW\N ANm + Nﬂ“\nvu\n ANn — NQW\NVU\N

@o — WAAP + Nﬂ“\uv 1/2 ANn — N.ﬂn:nvtnv

1 1
+|l ———
w2y

4 Uh+202) 7 (1, agayn
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1)1
M M Q~ 2 d_tuvu\u IQ~ + Nibvuﬁ

(b ) ?%J-
J

1 1 1
4737 NQ_ +213) + (- Ndwnv_\uv
1 1 1 1
b, IMIN. *Hﬁuﬂ mﬁn +Nﬁ“\~v5 + 4 I.N.R\Nv_\uw +
(vrgm) (o)
+F L7 + T
72 (. +2 i3 (=2 i)z ] |-

The values of the other constants have been mentioned as the final result contains
only the above ones and #, I, given by the following relations.

NQ”H:.TM
N~“M+.ﬁ~+M—ﬂ—.

Now to find out the displacement and temperature distributions etc., for the two
cases we substitute the values of the constants in the equation (3.9) and (3.10),
respectively. Since we limit ourselves to short time approximation, we expand the

e t1fp-bobo

+ 7

ANQOQ~ @w + N@emv— Qw - vaomvn - N&cﬁ_vﬁo +

I
—— X

+(ajb}— b —al - 1) (a,~ b,Ea, — \noaovv +
4

X Aﬂhw@wl Nww = Qw - Mv AQNW@Q -+ \Aﬁvc + anv - NVOANQOB_ @.w +

m..o_mm..vauvu
3
p

+N@e@—b%'N@c@~|N§c§—vv+ AANQOQ-@M'

M@o?hw I.N@e? - Nnoa:v Ah_ “ aovumv + Anw_&w - &w =

—ai- 1) (- kea, + byEkoa, — byEa, - bs&ao)} +

A 21,2 2
ﬁu AAhoUolvolnml C Aaumglaﬁm\&&a.f

+ me.ﬁ: - \&@m + vwv +AN§OQ—~VW + Nmucwu—aw I!NNVO&— - Nﬂca~v X
X (a:8bo~ by)}

+

resulting functions in ascending bb\ibhmbhtﬁb:mﬁﬁﬁ.md:Jlaﬂ:mdmldiﬁﬂmn|@5:ulw for the second case, the expressions for the displacement and the

1/p.
The expressions for displacement and temperature distribution for the first case

are the following:
Oo

) = T B = (ab T I (a5 13:40)
<[ (abo(bi= 1) e-m) S (abo(a—1) ) +
e~ u¥ g—apt
-+ AN&e@c@muTﬁvwl Hv Ah.@@&.@—ﬁbl

ﬁu
- QNMPU?.AWW - :W +

e bork

P e % {b,Eagbo(ai — 1)—

(1) (@b i) = 2a8bob + haubi( i~ 1)

and

—bykp
- O _0 0
AO ~§ex

O(§, Evnm AA§+@~.VNIA§W§+CV (a,— by,) p
(3.17)

e~ %k
P

X (a3b3— b3~ 1)} —S== (e~*tEpy(azbi— b3 — g2 - :T
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temperature distribution are found to be

_ e (e bW a-byE b5
a(E, )= ﬁ S e

(Bi—a) D’ l#l 3.18)
Oln_mﬂlhcma. ; @lv.m leemv
T @R e g
- ~b15 a—bokp b2~ Hv et a—akp 2_1
Ot p)=o; T e (bi—1) e-ute (a3-1)
R Y C ) Ry (3.19)
I e ﬁg_ —ko(bi—1) bE(bZ—1)
P’ bo(bi—ad) bo(bi—a) w *
e b emake (@—1) 244 —Ag(ai—1
+ - 1 ac vw
P’ Tam ao(b? — a2) a(bi—at) %
Lt ﬁ? +2byb,) - koboby + (ki — k! + ki?) (b3—1)
.uu vcavw - amv B

—_— 7 I 7ra o b

— by g 2o~ KB 1) byE(BE—1)) e-eife-ar
bo(b3 — a2) bo(b3 — a?) v P’
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2 _ _ ’ 2
x *Qum AQO mv + bnm Nbaa_ >QAQQ Mv

ao(b§ — a3) ao(b3 — a3)
_(a3+2a,a,) - \K.noa_# (AP—~A{+AP) (a2 - 1)
ao(b3 — a3)
where
Np IIAQQ - mvcv ANAQO + Uov AQ— + N:v |AQ—W@+ T-Qovv + AAQ@;T hvovul
- vomvwlamv
l?avc —1) (a.— b))}
@om&wl awv
K = AN@Q@— - NQ@Q—VWQ + T—A@w - Q%v
o veAvwlnmv
. _ AA@W - ﬁw + N@cvn + N@QNAT@ + ANTQNE 'Nﬁeﬂnvvﬁv
A= bo(bi— a3)
Al= (2bob, —2a0a,)ay + ay (b3 — ad)
o ao(b} — a)
and

Al = A@w — aw + Nvomvu - NQ@QNV@lTAN@oU- - Nﬁchnvh—
= «

ao(bi — a3)

Now taking the inverse Laplace transform of the two equations (3.16) and (3.17)
we find the final expressions for the displacement and temperature in terms of
non-dimensional variables & and T for the situation in the first case.

u(E, T)= x

{(ao+ bo)— (anbo + D (agby) [ (T~ a8) H (s~

= a&) {aobo(b3 ~ 1) — asbe(bi — 1)aE(t — a0 E) +
+(t—a0§) (b3—1) (arbo+ bra) + 2a0b3b,(T - ao &) —
koaobo(b? — 1) (7= a6&)} — (T~ bo) e *H(7 — by )
X {@obo(a3 — 1) + aobo(ad — 1) b,E(T — bo&) + (a2 — 1) x
X (@1bo+ b1ao) (T— bo&) +2aZbob,(T— bok) —

— koaobo(as—1) (1~ bo5)}]
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(3.20)

and

Similarly taking the inverse Laplace transform of the two
(3.19) we find the final ex

of the non-dimensional variables £ and 7 for the situation in t

and

0§ 1)=

Qcmﬁﬂl @cmv
e{(ao+ bo)* = (a0by + 1)} (ap— Bg) < (3.21)

X [{ao(aibi— bi— a3 1)} {e-4:t— bk e {1~ byE) ~
—bsE e ¥z - boE)) + {a0(aga, b2 + 2bob,ad ~2b,b, —
—2a0a) ~ (adbi — b3 — ai 1) (a, — koto)} {e % (7 — bok) —
~boSe ¥t~ bo)?} + (a,(2apa, 8+ 2bob,a3 — 2bob, —
2a0a1) + (a3b}— b — a2 —1) (@~ koay)} (e~ 2§z — bo&)’}] -

G H(T - a§) 212 _ 12
Iﬁﬁa = @ovMAAﬁcuT @canAh@@o.T 1 v MﬁWoAho@ol mvcl

—ai—1)} {e - g,k ez —q,f) ~aEe YT - g E)?) +
+ ﬁ@cANQGQ—@W + N@o@-ﬁm = N@o@— I..Nﬂea~v - NAOWOAQWWM -

~bs—ai—1)} + bi(a3bi~ b3~ a3~ 1)) {e™ X1 —af)~
A€ ™ ¥~ a£)?} + { b,(2aoa, b3 +2bob, a3 —2byb, —
—2a0a,) — kob,(a3b2— b2 — a5—1) + by(a2b2 — bjai~1)} x
X {e™ 1~ a£)?}].

equations (3.18) and
pression for the displacement and temperature in terms

he second case.

u(g, su@.m.mw [HT~ a0) {e™ Xt~ a,£) — g, e~ni(7 2§)* ~
(3.22)
KT @) + H(r~ RE) (bs8 eei(a— iyt —
e (1 —bE)+ K, e (g~ b8’}
O )= G- D e mn i) (329

Nwwm Qlw.ml A@M - vaum @lv—mﬁ.ﬂ.l VOWVN + AN@QW- -
~ Ko(b3 — 1)} e~*¥(7— by&) — {2b,b, = Ki(b3—1)} b,E x
X €T —boE) + {(b3+2bobs) — Kibyb, +(Kg+
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O H(t — aoE)
ao(b3 — a3)

X[(a5—1) e ¥~ (a2 - Da,§ e ¥t — ayk) - a; £ e~ x

X (a3—1) (v~ ak) + {2a0a, — Al(a2~ 1)} e ¥t~ &) -
— @k N1~ B {28, — AY(@d— 1)} + {(a? + 2a0;) —
= Aototi + (A~ A{+ A7) (43— 1)} e~ (1~ g,

where H(t—a,&), H(t— bo&) are well-known Heaviside unit functions.

+Ki*~ Ki) (b5~ 1)} e ¥~ by&)Y] -

X

08

06+

4. DISCONTINUITIES IN WAVE PROPAGATION

From the results obtained in the last section, we find that the expression for the
displacement u(E, 7) and temperature O(&, 1) contain terms involving the
Heaviside functions H(T~- ay) and H(z— bo§). The probable points of discon-
tinuity are &=(t/a,) (v/ bo). Again since a,> by, it is found that one of these two

points of discontinuities moves faster than the other. The jumps in the displace-
ment

{u(§, 0" — u(g, v} =[u(g, 1)]

and temperature

{8(5,7)* - 0(&, 7)) =[0(, 1)]
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Fig. 1. Dependence of ©(7) on & (see definitions in Rel. (2.5a)) with small divisions specified in the
figure.
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at these two points have been determined remembering that a,> b, vide, equation
(3.15). Here {u(§, 1), O, 7)}* and {u(g, 1), @(E, 1)}~ indicate the values of the
displacement and temperature to the left and right side of the point. The jumps for
the displacement are found to be zero at each of these two points, which indicate
that no discontinuities exist in deformation.

Unlike deformation, the expressions for temperature were found to be discon-
tinuous at each of these two points. In the first case

Oobo(aibi — b — g2 — 1) et
e{(a+ bo)* — (aobo + 1} (a;— by)

~®Amv Hzmnlno =
(4.1)

£

= O0a0(a3bi — b} — o — 1) e~01%
[O(, .«:TH}I§.
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20 small divisions=0.05 m!lv.

Fig. 3. The same description as in Fig. 1.
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In the second case
_06(a5—1)
[O(E, ﬁxmnig = ao(b2 — al)

bbi-1)
BQcFénﬁM:%oa

et

(4.2)

Since the expressions for the stress o(&, t) contain the temperature term, the two
1bove mentioned points of discontinuity will appear in them also.
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Fig. 4. The same description as in Fig. 1.

5. NUMERICAL CALCULATIONS

We have already seen in the last section that the deformation field is free of the
points of discontinuity and only the temperature field contains sich discontinuities
at the two points £= T/ao and & = t/b,. This has been illustrated graphically in the
adjoining figures 1 to 4 with the following values for the various material constants,
vide, [6]. Non-dimensional time ©=0.25, thermal relaxation parameter t,=0.05,
6;=1, &=0.0003.
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6. DISCUSSION

In the present paper it can be seen from equation (3.15) that in the absence of
the relaxation time 1; the material constants a, and b, reduce to one and zero,
respectively. Substituting these values for gy and b, in the equation (4.2) we find
that no jump in temperature exists at these two points, which agree with the results
of the classical thermal coupling.
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