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MODELS oF PARTICLE COUNTERS WITH
PROLONGING DEAD TIMEY)

A UéﬁmﬁmeNC&. G.A. OSOSKOV?), Dubga

MOIEM CIETYHKOB YACTHI] C MEPTBRIM BPEMEHEM
NPOTEBAIORIET OCst THNA

JaCTHY, nonagaromux ga CYETIHK 33 nepuop MEpPTBOro Bpemeny; 2. pacnpenenenue
BPEMEHHOTO MuTepRana MEXIY IBYMS chenyiouum Apyr 3a ppyrom qacTHuammu; 3.
COBMECTHOE pachpenenenue MEPTBOTO BpeMeny u nocnenosatTenntorg BpeMenu npoc-
TOR; npuGnuxennpre BEPOATHOCTHBIE bopmynsi.
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called the primary process. We suppose that any arriving particle generates an
impulse of a ra dom length X (may be constant, too) which starts after arriva] of
the particle at the counter. The impulse is 3 reaction of the Counter to a particle
action, and the counter may register only if no particle impulse is present, that is
when it is idje (i. e., able to record). The Se€quence of the registered particles forms
a secondary process selected from the Primary one, according to the type of the
counter used.

the registration process start from =0 Denote by
X, the duration of impulse Starting at 1, (n=0, 1, 2,..). If the nth particle is
registered, then the dead time starting at ¢, ig equal to (i) X,, for the type
I counter; to (ii) max {X., 7. - Tt Xt — 1, + X, ... Tim)—1 — T, +
Xim-1}, where k(n) is the subscript of the Successive registered particle, so that
k(n) =min {kik>n, “>T+ X, r=p, -«» k=1}, for the type II counter. The
diagrams below illustrate the situation.
Here the time intervals with full lines denote the dead times for the correspond-
ing types of counters,
In the following we shall deaj exclusively with the counters with the prolonging

particles,

Usually it js Supposed that interarrivaj times T, =, Tt =12, . are
assumed to be m:amnm:agr Em::dm:% distributed random variables with the
distribution function Fx)=P(T,< x), n=1, and independent of the impulse
lengths, A.K.vnuc, which are assumed to be _.saono:aasﬁ Eo::.nm:w distributed
random variables with the distribution function H(x)=pP(Xx, < x), n=0.

3. The joint distribution of the dead time and the successive idle period (i. e. the
time interval when the counter is able to record) and the €xact solution of this
problem for the discrete case of distribution,

4. The approximative probability formulae for the cases 1 and 2.

IL EXAMPLES OF COUNTER THEORY APPLICATIONS
IN HIGH-ENERGY PHYSICS

Here we show that the theory of counters with the prolonging dead time may be
applied to some other actual problems of Ew&-goa@\ physics.

IL1. Grain counting in Photoemulsions



1L2. Streamer track density

This problem arises when we wish to describe blob-length measurement in
Streamer chambers i Em:-m:mqmv\ physics. In the known models [9—11] the
Streamers are described as circles having centres on the trajectory, and the number
of centres js distributed according to a Poisson process. Interpreting the left-hand
intersections of the circles with the tra jectory as the arrival times, and the diameters

as the impuise lengths, we obtain the counter with the prolonging dead time, The
same models, but with constant diameters, arise i the bubble chambers [9—12].

1.3, Automatic ionization measurement

Duetoa scanning apparatus, the experimental data op the blob-length measure-
ments have discrete values [9, 10]. “The particle arrivals” are distributed according
to the geometric law and the main problem is the determination of the discretized
blob-length (= discrete dead time). This task has been solved in [13].

many fields of science and techniques activity, the number of molecules in a fixed
region of 8as under conditions of low temperature, Communication channels,
Queueing theory, etc.

IL Number of particles

OE mmmcﬁuc.o:mmz_m::o distribution functions of the impulses of registered
and nonregistered particles may be, in general, different in dependence whether
the counter jg busy or not. We assume that the modified counter with the
prolonging dead time (shortly modifieg Counter) is a triple n=(F; H, H*), where
Fis the distribution function of the interarrival times, H and fg* are distribution
functions of impulses of registered and nonregistered particles, respectively. When
H=H* then 7 is usual] ?o:-So&.mn& counter,

As it has beep shown in 1.1 the humber of grains along the trajectory is an
mportant physical quantity. Therefore jt is interesting to know the number
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Let us suppose that the dead time, say B, is formed by the sequences {X.}s0and
{ T.}7-1, where the sequence of impulse lengths is 3 S€quence of independent
random variables with H(x)= P(X;< x) and H*(x)= P(X.<x), n> 1, and inde-
pendent of the interarrival times {T.)r.. If we put A, ={X,<T, + +T,,
Xi<T+. + T,.., X, ,< T}, n=1, then, for p, =P(v=n), we have

w: ”NUA%~ one \ﬁal~>~.vu :Wmu AMHH.~V

where A denotes the negation of 4.

For our aims j¢ is useful to introduce an integer-valyed random variable, v*
defined as the number of the particles arrived at the counter n*=(F; H*, H*). Put
A¥={X < L+.. + Ty, Xo<Ty+ .. + T, .., X, < T}, n=1. Then, for
{A)e., and T»ﬁun: we have the following : f HM&A&_A.:AF j=1, then

~UA>~. %% 3 \»..._ * \»&v”wﬁkﬁﬂm_ld. >ﬂxl&v AHHH.NV
and, for m.nnw?*nzv, we have P¥=p(Ax %”;_N»nvw:‘WH.‘ Hence
 P=P(aA),
B (111.3)
P.=P(A,)- 2 P(A)PL, px)
where ”

EPT\M...\QB H(t+ . +4) B (1) o (t+..1.,)

dF(t) .. dF(s), n>1.

The probabilities P¥and P(A%) may be easily computed from (I11.3) and (I11.4)
changing A, to A%and P, 1o P%, that is, we consider the counter for which = H*,

It may be shown that there are the limits lim P(A,) and lim P(A%), and they are

Eo::.nm:% equal to some P=0. If we put

V@=PA)z+ 3 (P(A,)- p(a,_ ),

n=2

PHD=P(ANz+ 3 (P(Ax) - pras Nz,

ne2

then
M)=(¥'(1)— w1y 4 1)/p
(II1.5)
M(v*)=1/p,
where M(.) denotes the mean value of 4 random variable,
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In particular, if Fx)=1-e™ x=0,i. €., the primary process is a Poisson one,

and UH\ tdH*(f)< o, then
(¢]

p=e *0 (I1L.6)

IV. THE SECONDARY PROCESS

It has been noted that if the half-decay time is sufficiently large, that is, when the
primary process is a homogeneous Poisson process, then the process of the
registered particles due to the counter is not a Poisson one. However, these
particles may be handled by the successive counters. Therefore it is important to
know the secondary process stochastic properties.

Here we determine the characteristics of the output process for the general
modified counter n=(F; H, H*).

This problem has been solved by several authors. A particular case (as the

problem in the explicit form has been solved by authors in [19] for the counter (F;
H, H*). Define a(s) H%x € dF(x), s=0 (a(s) is the Laplace transform of F),
and determine, for emzw 520, a new distribution function F(x)=
a(s)-! \ “e* dF(y).

The _.Mo&m@m counter n.=(F,; H, H*) determined a ¥, i. e. the number of
emitted particles during the dead time of the counter 7. Let f(2)= M P(v,=n)z",

|z]<1, be the generating function of v, . Then, for ®(s, z) = M(e—*2 ). s=0,
_i <1, where Zis the time interval between two successive registered particles (we
recall, that all 7' s are independent, identically distributed random variables, we
have, due to Z= T,

n=1 n=1

eﬁh. Nv“ M \a - 0[.2<N<Qw” M s.h.,ﬂﬁﬂlk:?:):bN:
dF(4)...dF(s,) dH(x) dH*(x,) ... dH*(x,),

where the integration area C. has the following form
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X<t 5 .

(a<t)s, Ax.A:,INv c ﬂa_A:+:.+~.ln

K<t
H<t+... .+,

X, < 1,

(here the superscript ,,c“ denotes the complement of the set mentioned in the
parentheses). Hence

D(s, z)= M a(s)"z" P(v, = n) =f.(a(s)z), (Iv.1)
especially
M(e™*)=f(a(s)), s=0. (Iv.2)

Due to a one-to-one correspondence between the distribution functions and
their Laplace transforms, the converse Laplace transform of (IV.2) gives us the
distribution function of Z. For the mean value of Z we obtain from (IV.2) as
follows

M(Z) = uM(v), (Iv.3)

where y= \ tdF(¢) is assumed to be finite.
(t]

For example, if F(x)=1*/I'(a) e =G, €., F(x) is the Gamma distribution
with the parameters g =1 1 and A>0), then F(x) is the Gamma distribution with
the parameters ¢ and A+s.

V. DEAD TIME AND IDLE PERIOD



For the counter n*=(F; H* H*) we define the dead time, B*, the idle period,
I*, and We(z, u=P(B*< gz I*< u).

The event { B< z, J< U} is the union of two disjoint events A, and A,, where

1={B<z I<uy, X< T} and A ={B<gz I<uy, Xo= T,}. Clearly P(A)=

J, FOy+ )~ Fy+3) ary),
Under the condition AoAkAHMv&HzANVHG say, P(A]O)=
lekmm*ANIxIMmﬁNﬂ+...+N*Aw|amN.N.,+.:+N«,+EANIRV,
r=1

where Z% is the time interval between the k-1st and kth particles that have been
registered, and analogically we define BY. Hence using the probabilistic arguments
we may show that

Wz )= | (Fly+ )~ Fty+) arigy) + L owermn-

V.1)
~WH(y—x—¢ u)) dAN*(1) dH(y) dF(x), z=o0, u=0,

where N* is a renewal function of Z*, that is, N*(1)= > G*(1), where G* is the

n=0
distribution function of Z* and G* denotes the nth convolution of G* with itself.
Using the result of [21] we may show that, for the modified counter n=(F; H,
H*) we have

P(I<f)=1-p/P, (V.2)
M) =p™ [ p,ay, (V.3)
M(B)=(u— \ " pdi) M(v), (V.4)

where h.”:i\ % H(t;—1) ... m?+.:+_..le dF(4) ... dF(1,).
n 0 {+]

The solution of (V.1) is known only in special cases, for example, when the input
process of the emitted particles is a Poisson one. In example I1.3 we have seen that
there are »counters® with discrete values only.

We assume that the particles arrive at the counter at the discrete values of time
h, 2h, ..., and impulse lengths may have values A, 2h, ..., where h>0. This
modified counter s sajd to be a discrete modified counter. For this counter we may
give the exact solution to the integral equation (V.1).

Suppose h=1 and fln)=P(Ty=n), h(n)= P(Xo=n), h*(n)=P(X,=n), n=
1. Let W(n, m)=P(B=n, = m), W*(n, m)= P(B*=n, I*=m) for any n,
m=1. Then
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W(n, m)=" W(n, j, m) (V.5)

j=1

where W(n, j, m)=P(B=n, X,= i I=m). Using the simple probabilistic
arguments we may obtain

W1, 1, m)= h(1) f(1 + m), (V.6)
W2, 1, m)=h(1) f(1) w*(, m),C (v.7)
W2, 2, m)=h(2) (f(m +2) + f(1) Wr(1, m)).
If n=3, then
W(n, 1, m)=h(1) f() w(n—-1, m). (V.8)

recursively we obtain, for 2 < j€n-—1,

Win, j, m)= (i) 3" f(i) A(n, j, m, i) (V.9)

=1
where A(n, j, m, )=P(B=n, I= mX,=j, T,= i). Therefore
i 2
Almjom, )= B(n, j, m, i ), (v.10)
r=1
where B(n, j, m, i, wvaAN,_w+:.+NwLM\.lr Nﬂ+...+N«nL+mwM=lc.
here [x] denotes the integer part of a real x. Then
mﬁav .\.u m, mu \.v”M S\*A\.: N~v 5 gﬁnwluw .\.wlnv S\*A\J Sv. A<.HHV

where the summation is taken over the integers j,, ,>1 (s=1,.., r— 1), j=n -7,
i—z.— .\.~+N~+...+.~.wln+ml~ +\.w.l||=| ~..
For j=n, in an analogous way as above, we have

n—1

W(n, n,m)=h(n) 3 f(i) A(n, n, m, i), (V.12)
=1
where A(n, n, m, )=P(B=n, = m, Xo=n, T,= i). Hence
(n—i+1)/2
A(n,n, m, iy= 3 B(n, n, m, i, r), (V.13)
r=1

where B(n, n, m, i, r) has a similar meaning as B(n, by m, i, r) in (v.10).
Therefore

wA‘—u n, m, ~.v \v“M g{ﬁbu N-v — S\*A.\.~|: Nﬁlnv S*A\.J m+ N\vu ﬁ<.HAvv

here j, £,=1(s= L..,r=1), =1, =20, with ji+ 4+ +itt=n—|
We see that the formulae (V.5—V.14) give the joint distribution of the dead
time and the successive idle period for the discrete modified counter. We recall that
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tive formulae, and some limit estimates under the condition of a large intensivity of
the emitted particles will be given.

. For the numeber of the emitted particles arriving at the counter during the dead

time we have established the formula (IT1.3). When we have that H*(r)< H(y),

120, \o H*() dR()>0 and sup {u=0: \‘ e“dH*()< o} = (for example, if
0

H* is the distribution function of the constant impulse length, then this is true),
then

N_HPFQI._L+3: n=1 (VL1)
where
S 1ds
un:»M.U_ %1 a5 [P (D] (VL3)

B.=¥(B) (if H= H*, then B, =g — 1), and |r,| < CR-" (the constant C does not
depend on n, and R>1). The proof of (VL.1) may be outlined as follows. Let

P(z)= > P.z*, |z] < 1. Then P(z)= Y()/(1-z+ ¥*(z)) and, due to the Cauchy

1
B,=— P(z)/z**' dy.
a8, (2)/z**' dz

From the condition it follows that there is R>1 such that
1= 2+ W¥(z)=0 (VL4)
has a unique root B, R>B>1. If we put

T, ”F GANVQN _ GAEV
n Nh@*?n: ?:/§I§+N.
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The integral on the left-hand side may be estimated by the maximum module
[rl< CR* Putting B, =1/(1~ Y™*'(B)) and B, = YB) we obtain (VL.1).

To obtain the explicit expression for B and B, respectively, we consider
a function w=z= W*(2) whichi ifi a conform Wway transforms some neighbourhood
of the point w=1 to another of z= B. Therefore w= w(z2) has its inverse function
z=z(w). It is clear thatf= z(1) and Bi=7'(1). Using the Lagrange expansion
formulae {20] we obtajn (V1.2) and (V1.3).

Here we riote that the root B of the equation (V1.4) may be evaluated more

effectively using the Newton approximation method. In fact, if suffices to take into
account the form of (VL.4). Then for B, we have Bi=1(1- g (gy).

Example. In the Table 1 we give a numerical ¢xample of the aplication of
(VL1) to the counter n=(F; H, H), where Fis the distribution of the constant
equal 1, H(n=1-e>* > 0, and B and B, are evaluated by the Newton method :
B=2.515773, B, =2.338680.

Table 1
n 1._ ?uumnan_ n P, m.mumlal
1 6.3212-01 5.6010-01 6 5.5578-03 5.5578-03
2 2.2097-01 2.2263-01 7 2.2092-03 2.2092-03
3 8.8531-02 8.8500-02 8 8.7814-04 8.7814-04
4 3.5175-02 3.5176-02 9 3.4905-04 3.4905-04
5 1.3982-02 1.3982-02 10 1.3875-04 1.3875-04

From the Table 1 we may see that formula (V1.1) yields a Very precise estimate
for P, even for small n, so that we have P,~ BB

In the following we note that if the emitted particles are distributed according to
a Poisson process, and the intensivity A is very large, then

P(vIM(v)> ) ~e,
AZIM2)> =~e,
P(B/M(B)> f)~e¢-*

for any (>0. The conditions which this guarantee are the following :
\‘ £fdH*(f)< o and H*(4+0)=0. The proof is not present; it is based on the
0

methods developed in [21].
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In the figure below We present : a) the dead tine density function of the counter
n=(F;H, H), where =1 ~e ™ (=0, and H s the distribution function of the
constant equal 1; b) the dead time distribution evaluated by A<.m.l<.$v for

>
k1 050
=4
s 2
2 o
m 025
8

000

Fig. 2.

VIL. CONCLUSION

In the present contribution there has been made a Survey of problems which

€ar in physical Practice and which are being solved at the Joint Institute for
Nuclear Research, Dubna. These problems are very interesting in both aspects
— the physical and the mathematical, and they have a wide variety of applications
in divers fields.
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