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A NOTE ON TRANSITIONS BETWEEN QUARKS AND
GLUONS?

1. F>Z=Auv, Dubna

Using effective Lagrangian models we derive some new and interesting low-energy
theorems for matrix elements of scalar gluonic current between physical (quarkonium)
states of the pseudoscalar meson nonet.

3AMEYAHME O NEPEXOJAX MEXIY KBAPKAMH U ITIOOHAMM

Ha ocxose wMmopensubix 3QPEKTHBHBIX NarpaHXMaHOB B pabore BbiBeneHbI
HEKOTOPbIE HOBLIE HHTEPECHbIC HUIKOIHEPreTHUECKHE TEOPEMbl A5 MAaTPHUYHBIX
3AEMEHTOB CKANSAPHBIX ITIOOHHBIX TOKOR MexXay (punyeckuMn (xkBapkoHHEBLIMHU) coc-
TOSHHAMU HOHETA NCEBROCKANAPHBIX MEIOHOB.

L. INTRODUCTION

The knowledge of matrix elements for transitions between o&..:m.@ @ e.
quarkonium) hadronic states caused by pure gluonic currents Qo.n a review, see,
e. g.[1]) is interesting not only theoretically but also from an experimental point of
view, e. g. for a clear identification of some experimentally mo_.:a particles as
gluonic bound states (i. e. glueballs or gluonia). Within perturbative QCD transi-
tions betweeen gluonic and quark degrees of freedom are suppressed by the factors
O(a,), a,=g%4m, ¢ being the strong coupling constant. These factors mmm
responsible for the so-called OZI rule [2] formulated even Gwmoa the QCD era. It
forbids the quark line annihilation and is n:o:oao:o_om_nm:« mcﬁno:mm., mom
example, by the smallness of the & — sz decay, by an approximate equality o
the o and the w meson masses, etc. . . —

A very popular and simple theoretical formulation of this phenomenon is wi .
the multicolour chromodynamics [3]. In this approach the number of colours N.is
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Suppressed as O(1/N.,). Thus, as applied to gluonium decay, this theory generally
predicts [4] that glueball states must be very narrow with widths of tens MeV,

and yn (proceeding through an intermediate gluonic stage
[6]) are examples of such strong couplings between 1'(n) and gluons. In the o+
channel an exception from the OZI rule can be represented by the dominant decay
of meson ¥(3685) into nx J/ W {5] with final pions produced by the S-wave. This
decay is shown [7] to proceed in two stages: first W(3685) — 99J/ ¥ and then
two gluons gg are converted into 7. In this way the decay has been satisfactorily
explained [7] by using the following low-energy theorem [7]

AQA.SY«AP:IAOV_.OV et e = ~ 9’ + O(q"), (1)

current to be specified later, Thus, in agreement with experiment eq. (1) explicitly

between gluons and quarks in the o* channel.

The purpose of this paper is to rederive eq. (1) in a different manner by using
effective chiraj Lagrangians (for a review and further references see, e. g. [8-9,
17]). In this way we shall also find new and interesting generalizations of eq. (1) for
the case when the matrix element on the I. h. 5. of €q. (1) contains any physical
pseudoscalar states (i. e. with real masses) from the whole nonet (section IL.). Some
conclusions are given in section 18

Il. MATRIX ELEMENTS OF THE SCALAR GLUONIC CURRENT
BETWEEN PSEUDOSCALAR MESON STATES

The trace of the energy-momentum tensor of QCD has been proved to be of the
form [10]

c 'S -
(O)ocn = ~3 m F) Fany > magq, ()

where F2 ‘s are gluon field strength tensors, b=11-2N,/3, Ne=3 is the number
of light quark flavours, m, and qi(x) being the mass and field, respectively, of
a quark of flavour i, (i=u, d, s). Here, we have neglected contributions due to the
anomalous dimension of 4q operators as well as O(a3) contributions to the first



particles, heavy quark flavours will also be neglected. The qmna of the ener-
gy-momentum tensor of QCD is a renormalization group-invariant quantity, and
we easily see that in a chiral symmetry limit (i. e., if m,=0) it is directly related to
the scalar gluonic current H(x):
9 q, 9 a,
=2 =2 — F% Fo(y), 3
H(x)=g 2 F(x)=2 & B pon(y) (3)
where b=9. Thus, to find _oi-o:mnmv\ theorems of type (1), we just need to obtain
analogical relations for matrix elements of the trace ©! between nmocaom.nm_ma
meson states. In the interesting low-energy region this can be done very effectively
by using phenomenological Lagrangians (8, 9, 17].

i) Nonlinear effective Lagrangians

We shall start our considerations assuming that the low-energy dynamics of the
nonet of pseudoscalar mesons is described by the following generally accepted
nonlinear phenomenological Lagrangian [9, 17].

u ~ "
Mﬁnmﬁ [(3.U)3+U")] Tmoﬂm?:: U=ln U -2 Tr [M(U+ U")), “

where M is proportional to the 3 x 3 quark mass matrix, the pion decay constant
f=93MeV, and my is related to the masses of pseudoscalar mesons as follows

my= n.+ mi—2 i, (%)

U(x) is parametrized as the unitary matrix:

5 Ao
U = fexp (i 3, 280), ©)
= f
where @'s (i=0, 1, .-, 8) are fields for the nonet of pseudoscalar mesons, and

Gell-Mann A matrices are normalized to Tr (Ad;) =28, ,E.n. second term in eq. (4)
is required by the axial anomaly and breaks explicitly the axial U (1) symmetry but

pseudoscalar #' particle even in the chiral limit (i. e., when M=0). In this way the
U (1) problem is solved [9, 17]. ‘ \.

Rewriting the Lagrangian (4) in terms of the scalar u) s and pseudoscalar v/
5 (j=0,1, .., 8) fields defined by relations

1
L= — I z * 3
w=z Tr [A(U+ U] -

220

H +
U= Tr [A(U= U]

one obtains an »improved* [11] energy-momentum tensor from eq. (4) as follows
[12]

O =3 [(3,u) @) + Cur)@0)] - g %y +

i=0

6 (8)
+ A gu0- 83,03 (ui+ v,
We see that this tensor differs from the canonical one by the last term in eq. (8) that

is required for getting a simple connection between the trace of eq. (8) and
divergence of the dilatation current Du(x) [11], i.e.,

3.9"= O ©)

It is worth noting that the dilatation “charge” D=[d? P°(x) generates dilata-
tion transformations, e, &, for field u with dimension 4 we have

[D(), w0} = ~i(x43, + dyuc), (10)

However, in the present special case of pParametrization (6) the fields wand v have
dimension d=0 [12—14] and the difference between eq. (8) and the canonical
form of the €nergy-momentum tensor disappears. Then
normal order and duye ¢o egs. (4), (6) and (7), eq. (8) becomes

(0= :{ 3 [(Guu)(a.u)+ (B)(3,0)]

=0

11
H an
- .QE\&ZFW + N .Q1<A ®»v O/chiral limits

where index “4” labels the correspondence to eq. (4) and the constant term is
added in eq. (11) to achieve a correct normalization of (O] ©:0) in the chiral
limit. With the equations of motion, the trace of eq. (11) is as follows

(9, = ;w,: :9885&;&%%?? U—In UY)p+

+Tr[M(U+ U9+ ¢ ©O%) o/ctivat imic - (2}

We easily see that VEV of eq. (12) leads to a trivial identity in the oE.BT@SEQJ\
limit thus Justifying the nhormalization chosen in €q. (11). Now from egs. (2), (3)
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and (12) and after some manipulations we obtain the following effective relation
for the gluonic current 3):

H= ”.M. 2@865&7@? (In U-1In U2 -

12

(13)

2T MU+ U] +mAm mv .

Av m T O/chiral limir

From egs. (3) and (13) we get

% & 8 2, 1 v
2 ) = (% 2 +=mz), 14
AuﬂmﬁVo Auﬂ HuVo\nEB:i:.Tw\uA‘:w Nsu (14)

where VEV of the mass term was estimated from egs. (4) and (6). Eq. (14) is very
interesting and valuable because it gives us an idea how the gluon condensate is
changed if one proceeds from the chiral symmetry limit to the real world and vice
versa. For instance, for the value [15] {(a/7)F2)o=0.012 GeV* one obtains
(0 %) F?) oycnieas s = 0.006 GeV*, and we notice a large difference between these
two values. In other words, a chirally symmetrical world does not seem to be a good
approximation in the case of the gluon condensate. However, when the
phenomenological estimation of ((0u/ ) F2)o has to be larger by a factor 2 3 [16],
then the chiral limit is still a reasonable approximation of the real world.

Due to eqs. (4 - 7) and (14) there are no free parameters in egs. (11 ~13), and
We can calculate any matrix element of these operators between pseudoscalar
meson states. As usual, calculations have to be done in the tree approximation, and
we shall also use the covariant normalization of states : B}

(plp') =27y20,6%(p— p). (15)

In this way from egs. (11) and (12) we get, for example, the following relations
= 1
(P(p)P(p,)| ©,,]0) =5(nr = 4.9, + g g, (16)
and

(P(p) P(p,)| ©40) = g2 + 2.3, a7y

where r=p, — p,, 9= p1+ p,, mp is the mass of particle Pand PP= n*n~, K*K-,
etc. Analogously, from €q. (13) one obtains the new theorems as follows

M(P)n(p)|(— H(0))[0) = g2 + mia+ (n + m— 2 n2) sin? @
(n'(p)n(p2)| H0)[0) = (me2. + nty—2ni) cos Psin P, (18)
(1'(p) 7' (p)I(— H(0))]0) = g2+ o+ (Ml + m— 2 m2) cos? &,
where the ny' mixing angle & is given by [9, 17]
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_ 4V2( i~ m?)

O S 2m= iy )
and my is from eq. (5). This leads to the value = —18°ip 4 good agreement with
the most recent independent  theoretical [18] and experimental [19]
determinations.

Thus, we see that eq. (12) (or (13)) effectively (in an operator form) represents
a generalization of eq. (1) not only for nonzero masses but also for the whole nonet
of pseudoscalar mesons. In fact, from eq. (12) (or 13)) any interesting matrix
element of the operator O (or H) between physical pseudoscalar states can be
calculated in a straightforward and casy way. Some of the results of such
calculations are explicitly given by egs. (16— 18).

ii) Linear effective Lagrangians

While within the nonlinear phenomenological Lagrangian [9, 17] approach the
validity of eq. 1) is directly obvious from egs. (6) and (13), the situation is not so
clear in the case of linear effective Lagrangian models (for a review and further
references, see, e. g [8]). We shall show this starting with the simple linear o
— model containing three pseudoscalar pion m(x) (i=1,2, 3) and one scalar a(x)
fields. They form the (1/2, 1/2) representation of the chiral SU(2) x SU(2) group
and the chirally symmetric Lagrangian is given as follows [8]

% =20,07+1 3 @,my - L (o243 2) -
L o\ Vu 2 wli u ..v

i=1 N i=]1

N+ 3 x)’

ie=]

(20)

where A and 12 are suitable parameters. With a conventiona] assignment of
dimension 1 to o(x) and 7(x) and using equations of motion we obtain

u

(Oo= (o"+3 ) (21)
i=1

from the most general form of @,, (eq. (8)). Spontaneous breaking of chiral

Symmetry through the existence of (0/0]0) = 6,#0 leads to the necessity to correct

the theory by the following redefinition of field o:

o(x)= 0+ o' (x). (22)

Correcting eq. (20) in this way and eliminating the term linear in o'(x) from it by
using the vacuum stability condition (w*= —4A03) we arrive at the right Lagran-
gian. This Lagrangian gives zero masses for pions, a nonzero mass for o-particle
(m,#0) and the following interaction term
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For 1) =~ 12 1) M 2(x). 23)

N To

In terms of the o'(x) field €q. (21) reads

N u
(®)20= 120, — nmay0’ I%AQ;+M awv (24)
It seems clear from egs. (23) and (24) that dominant contributions to the matrix
element (n*(p,)n( P2)| ©]0) (which are obviously proportional to 2 instead of
to ¢*=(p,+ p,)*) break the validity of eq. (1) [14]. However, more precise
calculations show that such dominant contributions cancel each other leading again
to eq. (1). In fact, we have

g

A§+APV§AF:A®«V~LOV == — 7— Ewﬂ q*+0(q%) (25)

in agrement with eq. (1). Very recently eq. (25) has also been proved [20] in
another way, by using the relation

3 3 2
(0= 1o+ 3 ) ~ 4 o7+ 3 )
i=1 i=1 AN@V
3
+ 2, mOm) + o(0o)
i=1
instead of eq. (21) that is obtained from eq. (26) with the help of equations of
motion. In the chiral limit the only nonzero contribution to the matrix element (25)
is from the last term in €q. (26), and it immediately gives the correct result (eq.

(25)).
IIl. CONCLUSION

well as nonlinear Lagrangian models. We have seen that while in the case of linear
o-model the validity of eq. (1) is not so obvious at first sight, in the case of
nonlinear phenomenological Lagrangians the validity of eq. (1) is evident just from
€qs. (6) and (12) (or (13)). We have also derived a set of new matrix elements (see,
€. 8., eqs. (17) and (18)) in which the states are not only with physical masses but
also from the whole pseudoscalar meson nonet, including the 7’ particle and
correct mm’ mixing.

All these relations (egs. (1) and (18)) are examples of strong, unsuppressed
transitions between quark and gluon degrees of freedom in the 0* channel, and
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such relations have to be satisfied [14, 20~21] by any realistic mode] of coupling
between the scalar gluonium and pseudoscalar mesons.

In this connection we believe that especially eqs. (18) could be helpful in
understanding the recently discovered scalar meson G (1590) [22]. Having domi-
nant decays into nn and 1M’ channels [22] this meson has been interpreted [23] as
a pure scalar gluonium. However, this Interpretation a priori assumes strong
suppression of coupling between gluons and quarks (and hence, a necessary
suppression of decays into s and KK) in the 0* channel ; the assumption is
model-dependent (based on large N dynamics) and has been shown here not to be
true. In fact, there are models of a scalar glueball [20—-21], and these models

two pions [20—21}. On the other hand, supposing consistently with eq. (1) large

tions it could not be so surprising that the decay G (1590) — 7z is strongly
Suppressed because there exist examples of such Suppressions in the hadronic
world, e. g., while I=TI(p - 7m) =154 MeV [5] its radial excitation o’ (1220)
is strongly suppressed to decay into s, i. e. I (0" - #m)=~3 MeV but the total
width T o =(200-300) MeV [26]. Moreover, if some wide structure in the G
(1590) region in the 7 system exists [27], then the interpretation of the G (1590)
meson could be even more complicated. ‘
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