acta phys. slov. 36 (1986), No. 3

A PATH INTEGRAL FOR NUMERICAL COMPUTATIONS
OF THE ENERGY LEVEL DENSITY OF A PARTICLE
IN A GAUSSIAN RANDOM POTENTIAL

M. KOLIBIAR'), Bratislava

integration numerically assuming the autocorrelation function of the potential to be
a Gaussian “bell”’, which seems to be physically acceptable. The results of the numerical
procedure are compared to those obtained from the quadratic approximation of the
autocorrelation function due to Bezik (1970).

HCHOIb30BAHHUE HHTEr PAJIOB IT0 TPAEKT OPHAM
A YMMCIEHHOTO PACYETA
WIOTHOCTH COCTOSHHI] YACTHIIBL, ABMKYIIENCY
B TAYCCOBCKOM CIIYYAHHOM TNTIOTEHIMAJIE

Hcnons3ys Beipaxenme AN NROTHOCTH COCTOSHHI B muje obpaTHoro npeo6-
pa3osanus Jlannaca ot ctaTucTHYeckoi} CYMMBI U 32MHCAB NOCHEAHION B BHje MHTErpa-~
712 1O TPAEKTOPHAM, MOXHO MOMYMINTS MHTEIPan no TpaekTopusM ans maoTHocTH
COCTOSIHUI YaCTHILbI, ABUXYLUEHCS B TayCCOBCKOM CIy4aitHOM NOTeHunae., Mpusonurcs

L INTRODUCTION

Path integrals are frequently used in quantum physics. especially if fundamental
problems are treated. On the other hand, the Schrodinger equation seems to be
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a more appropriate tool for “practical” problems like calculations of the energy
levels of a given quantum mechanica] system. However. the problem of the energy
levels turns out to be very difficult if we replace the potentia) by a random function
of the coordinates. The random potential is a natural concept to describe
disordered solids. In such a model [1, 2] we are interested in average values (or
higher statistical moments) of physical functionals (e.g. energy level density) where
averaging is meant with respect to the randomness of the potential. Although
significant progress has been achieved in the study of the properties of Schrodinger
operators with random potentials (3, 4], the problem of the energy level density
calculations remains still to a great extent open. Concerning this problem path
integrals seem to be an appropriate formalism not only for analytical treatment byt
also for numerical computations.

the path integral form. Thus, to obtain the energy level density, we should be able
to evaluate the path integral expressing the diagonal elements of the canonical
density matrix for complex “‘inverse temperatures™ g, corresponding to the
Bromwich integration path in the inverse Laplace transformation formula. While
the canonical density matrix for rea] “inverse temperatures” B can be expressed as
a conditional Wiener path integral which can be computed numerically by standard
methods, the situation js more complicated for imaginary g.

After averaging with respect to the randomness of the potential and taking into
account its statistical homogeneity, the relevant canonical density matrix is given
[1] by the path integral ‘

r(h)=r, 1 (e

8:1;37 Arlexp (~5 [T 2 p) du 4 (1)
r(0)=r, 0
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where B, is the autocorrelation function of the random potential V(r), [r(u))
represents the integration over alj paths going from the point r=r, at the time
u =0 to the point r= T» at the time u = pg, B=1/ksT; where kg is the Boltzmann
constant, m is the mass of the particle and his the Planck constant, divided by 27
the brackets ( ) denote the averaging with respect to the randomness of the
potential V.

Let us consider the usuaj approximation to the path integral (1)
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where u, = hg,, (i=1, 2, .., n), uy=0, Unsr = hP3,
i=r(u), (i=1,2, ., n), L=r,r.,=r.
This integral converges to (C(r,, r,, B)) as n goes to infinity. If B is real, then the
terms i
2 -3/2 Ah.i - _...VN 3
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can be interpreted as the probability densities corresponding to Brownian random
walks from the points Ii at the times u;=hB, to the points ., at the times
. . .. I ]
Urs =hBiys and with the diffusion coefficient UHM M . Thus, the trajectory r can
be considered as a wqoiim:&lamw trajectory with the starting point r, at the time
u=20, the ending point r, ar the time u=hf and with the diffusion coefficient
HNM:W Clearly, such an interpretation is not possibie for imaginary §.
m
It should be emphasized that the formulae (1), (2) contain a “two-time" action
so that we cannot utilize the well-known property

A, 1, B+ )= » &ErC(r,, r. B)C(r. 1, B))



Ill. THE PATH INTEGRAL FOR THE ENERGY
LEVEL DENSITY COMPUTATIONS

Let us define a dimensionless “‘time” variable

u

"THB

and a dimensionless quantity

o(r)= /\mww (r(hBr)— 1w, —(1 - D)r,) . (4)

From the mathematical point of view, the quantity @(t) corresponds to
a three-dimensional Brownian bridge random walk with the “diffusion coefficient™
D=1/2 (D is now dimensionless). Clearly, o(0)=(1)=0. Such Brownian
bridge is sometimes called a standard one. It can be seen after some calculations
that the 3n-fold integral (2) can be written in the form
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where ¢,=o(1), (i= 1,2,..., n), ©=0.+1=0, 1,=0, 1,.,=1. The exponential

terms ex ﬂl@.ﬁ —e) «I
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interpreted as the probability density due to the “piecewise ™ approximation of the
Brownian bridge, no matter what value the “inverse temperature™ B may acquire.
The B-dependence of the 3n-fold integral in (5) is included completely in the last
exponential term with the autocorrelation function B,. If n — %, then the relation
(5) gives the limit

(1 09) = () e (- ) ©
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where dv denotes the probability measure corresponding to the three-dimensional

standard Brownian bridge introduced above. The complex square root Vh*B/m
can have two possible values differing by the sign. However, this causes no
ambiguity since the probability densities corresponding to the Brownian bridge
random walks g(t) and — o() are equal.

The density matrix for complex “inverse temperatures” B can be obtained as an
analytic continuation of C(r,, 1., B) for B real. Clearly, the applicability of this
method depends on the form of B,. If we choose B, in the form

(- r—ry
maﬁﬁ'NVHSNGxUAIA H\N VV,

(7)

where 7 is a constant with the physical dimension of energy and L is the correlation
length, then the second exponent in (6) is a regular function of B in the complex g
plane. It can be shown that if (7) holds, then the r.hs. of (6) is a regular function of
B too, provided that Re B>0. We may conclude that the method is usable for the
autocorrelation function (7). Such an expression seems to be a reasonable
approximation to a physically acceptable autocorrelation function [5].

Obviously, this method of analytic continuation of the path integral representing
the density matrix can be applied also to the path integral

,:.Eu,; ~%S. ﬂa
\@:gril;lé%% J, VirGo) du)
r@)=r, hl, 2 h J,
which corresponds to the canonical density matric of a particle in any “non-ran-
dom” potential V. The formula obtained in this way is identical with that derived in
[6] by a different method. However, the conditions under which such a formula
holds are formulated in a different way. In our approach, regularity of the
functional integral

[dv oxUAlub <T§ +(1—-1)r, + WQQL asv

with respect to the parameter 8 is required rather than the conditions concerning
the potential function V directly as in [6]. It should be stressed that these
requirements are in both methods rather severe. For example, neither of the
methods is applicable to the case of the linear harmonic oscillator because of the
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quadratic growth of its potential which is too fast to satisfy these restrictions. The
traditional approach based on the Schrodinger equation seems to be a more
appropriate too!l for numeric computations whenever a “non-random” potential is
concerned.

Since we assume that the random potential is statistically homogeneous we write

Z(B)=(C(r,r, B)) =(C(0, 0, )) . ®)

Assuming that the statistical sum Z(B) is not singular for Re >0, we can obtain
the energy level density g(E) by means of the inverse Laplace transform which can
be written in the form of the Bromwich integral

9E) =52 [*" 2(8) exp (EB) 4 )

27§ Jgy_iw
where 8,>0 so that Z(B) is regular for Re B = B,. Using the relations (6), (8), (9),

we can write the energy level density per unit volume in the form of an integral
relation

S5t [ 8 ) o 5 v (8 e
L L (10)
h_ d7'B, A »H:hw e(t), aﬂmu EQJVV .

As mentioned above, the symbol [ dv means the integration with respect to the
probabilistic measure corresponding to the Brownian bridge.

Although formula (10) can be in principle used for the energy level density
calculations, its direct application to numerical computations is not possible. The
reason is that the numerical inverse Laplace transformation is a notoriously
ill-conditioned procedure. If the functional integration in (10) is performed
numerically by a Monte Carlo integration, then the result is too inaccurate to be
transformed by the Bromwich integral (9) in (10). This can be overcome by
reversing the order of integrations in (10). Thus we arrive at the final result in the
form

QAMVNMMINH%\ hw“s Awﬁﬂwmvuinxc ?u;m+ (11)
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Considering that B, is given by formula (7), the step from formula (10) to (1 1) can
be based on the Fubini theorem since the integral

exp Am\w+ 2 ), dt ! dt oxu« P

(e(x)= o))

fdv h&ia dp

g—ico

turns out to be finite.
An application of formula (11) is presented in the next Section.

IV. THE IMPLEMENTATION OF THE METHOD
AND THE NUMERICAL RESULTS

To investigate the applicability of the formula (11) to numerical computations,
the function (7) was chosen to represent an autocorrelation function of the random
Gaussian potential. The energy level density g depends not only on the energy E,
but also on the physical quantities m, 17, L. Thus, numerical computations of g(E)
based on the relation (11) would give a three-parametric system of curves
9 =GgmnL(E). To reduce the number of the parameters involved we define
dimensionless quantities o =h*/mnL? s=nB and Y=nL’g(E). Clearly, y d(E
/n)=L%¢(E) dE. The functional integral (11) can be rewritten in the form

H uo.....uo m
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so that the dependence on m, 1, L is reduced to the dependence on the parameter
a only. .
The Brownian bridge random walk can be approximated by means of an optimal

orthonormal expansion [7—38] choosing the set of functions {sin (knr)y, as the
base. Each of the x, y and z components of the Brownian bridge random walk can

be approximated by the finite sum > (E/km) V2 sin (kmr), where &, are indepen-
k=1
dent normally distributed random variables with the mean value 0 and the

dispersion 1 and the factor V2 arises from the normalization of the sine functions
on the interval [0, 1]. The “integration over all paths™ can be approximated [7] by
an appropriate generation of the random variables &. In our case, the normally
distributed random numbers are approximated by sums of 12 uniformly distributed
random numbers obtained by a linear congruence generator,
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Having generated the random walk @ we can evaluate the integral

1 1
% a.i% dt” exp AIQ.X@?,VI@?:V%? for a given value of s by a numerical
0 0

quadrature rule automatically).

The integration with respect to ds in relation (12) can be performed by
a Gaussian quadrature with Hermite polynomials. The Hermite polynomials are
chosen because of the factor s/2 in the exponent of (12) which tends to — (Ims)¥/2
for s — ®, Res=g,. Since the use of an automatic integrator would be
non-economic, the order of the Quadrature rule is set up empirically together with
the parameter s,. The quadrature rule of the 48th order') and the parameter So
equal to 1 seem to be suitable for these purposes.

It is worth mentioning that the implementation of Gaussian quadrature rules of
high order is not a trivial task. About 10° coefficients are needed to make the
numerical experiments with various orders of the Gauss-Legendre and the
Gauss-Hermite quadrature rules possible. Obviously, these coefficients should be
computed rather than entered by hand. Such a computation requires evaluation of
zeros of the appropriate classical orthogonal polynomials, i.e. the Legendre and

a standard 64 bit double precision arithmetic is used. Mathematical explanation of
the numerical stability of this algorithm is given in [9].

To verify our method, a comparison was made between our results and the
results of two approximations which give the statistical sum analytically. First, the
statistical sum due to the approximation

mc?niou:u T !T: MNIVNV (13)

introduced in [1] was used to compute the inverse Laplace transform (9) by

—_—
Poznamka') (with the values of a equal to 0.5 and 0.3)
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a numerical integration. Secondly, the same procedure was also executed for
a trivial approximation

B,(r', r'")=const = 7> (14)

The numerical results for a =0.5 and 0.3 are presented in Fig. 1 and Fig. 2,
respectively, where the logarithm of the dimension]ess quantity y against the ratio
E/n is plotted. The results of the Monte Carlo method are depicted by vertical line
segments representing the statistical error estimates ((“30 rule”) of the method.
About 800 trajectories were gnerated during the Monte Carlo simulation. The
results obtained from the approximation (13) are represented by the full line. The
results due to the trivial approximation (14) are depicted by the dashed line.
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Fig. 1. The dependence of the dimensionless quantity y given by the path integral (12) on the ratio E/ 7.

The dimensionless parameter B/ mnL? has the value 0.5. The full line represents the results due to the

approximation (13) of Bezdk, the dashed line represents the results obtained from the trivial

approximation (14). The results of our computations are depicted by the vertical line segments

representing the errors due to the statistical nature of the Monte Carlo method ( + 3 standard devia tions
are taken as the error estimate).

As can be seen from Fig. 1 and Fig. 2, our method is usable provided that the
ratio E/n is above a certain limit, which is about — 1.6 for ¢ = 0.5 and about — 2.0
for @ =0.3. The approximation (13) works well for a similar range of the ratio E/n
as mentioned above. This is a remarkable fact because the canonical statistical sum
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corresponding to the approximation (13) has singularities even for Re g>8, (Bo is
an arbitrary real number) and the application of the Bromwich integral 9) is
mathematically Incorrect. Moreover, the statistical sum of any reasonable physica]
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Fig. 2. The curve Y=y(E/n)for h*/rmL2=0.3. See the comments to Fig. |.
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