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DYNAMICALLY REDUNDANT PARTICLE COMPONENTS
IN MIXTURES

B. FCN\»Om.Y K. g>w.~‘~2>m~v. Budapest

Examples are shown where the number of different kinds of particles in a system is not
necessarily the number of particle degrees of freedom in the thermodynamical sense. and

B CTanpuu paHneit Beenennoit,

L INTRODUCTION

Continuum mechanics (or, rather especially, Edno:_oorm:mnmv is very useful for
describing varioys physical situations when the number of the manifested macros-
copic degrees of freedom is limited. As extreme examples one can mention the
treatment of supernova detonations [1], the evolution of the Universe [2], [3], and
the expansion of excited nuclei [4]. The main advantage of the hydrodynamicaj
description is its simplicity ; the whole complexity of the matter is condensed into
several data as the velocity field, energy density, pressure and such. It is rather
surprising that such a simplified model can work under so differing circumstances ;
in fact, Table 1 of Ref. [5] is an excellent display of the increasing degree of
simplifications leading to hydrodynamics. Nevertheless, this approach is generally
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a simple system as some particle number densities M4, one thermal quantity (the
entropy density s or temperature T), and the .velocity field u’, and to express
a proper thermodynamic potential by means of them. Then the other hyd-
rodynamic quantities can be expressed by these variables [6]. Of course, some
hypotheses, as e.g. the local equilibrium, have to be used, because the continuum is
generally inhomogeneous;; it is not a priori obvious, e.g. in the cases when the
homogeneity is not sufficient enough, but this problem will not be discussed in
this paper.

Nevertheless, there are cases when the interactions are quite well known, but the
thermodynamic predictions seem to be incoherent or unclear, One can mention at
least three such cases : the “entropy excess” in heavy ion collisions [8], the absence
of A peak in energetic heavy ion collisions [9], and the tendency for monopole
dominance in the Universe [10]. In all these cases the approximations for the
interactions seem to be quite satisfactory, but there are doubts (in the second case
some evidence) that the determination of the actual number of freedom needs
some careful analysis. 4

One may believe that the number of particle degrees of freedom can be directly
determined, because the different particles can easily and clearly be distinguished.
Nevertheless, the situation is not so simple as we shall see. Now, let us leave for
4 moment the details, which are the characteristics of the independent particle
components, and consider some possible cases.

Obviously, if one miscalculates the number of independent particle degrees, and
chooses a too low number, then the full richness of the system cannot be described.
Moreover, any quantitative prediction connected with equipartition will be neces-
sarily wrong (See, e.g., the discussion in Sect. 2 of Ref. [11] about the specific
entropy of a nucleon-deuteron mixture.) Maybe it is surprising, but serious errors
can be caused also by the overestimation of the number of particle degrees. By
introducing a A component in a hot nuclear matter (which is, in fact, there from the
particle physicists’ viewpoint), assuming that the particle gas is dilute (which is

82

states, and so thejr masses are undefined; in fact the A momentum distribution is
moé.:ﬁa by the p and » distributions. Introducing only two particle degrees, the
predicted spectrum is far better [9].

Another Interesting System is a hot nucleon-deuteron mixture. Since the

temperature such a mixture js actually dilute in the sense that n,V, +n,V, <1

n.:mmm transition [16], [20], [21], [22], but there are serious problems, and the
Situation is definitely not happy.



“blue” protons, with properly chosen multiplying factors in the Fermi distribut-

IL THE SELECTION OF THE THERMODYNAMIC
PARAMETERS

’

or investigation ; then by producing arbitrary smal] changes in the parameters
hosen previously, and observing the answers of the system, the entropy matrix

4

G = l®©~®©» AN~V

can be measured (here s stands for the entropy density, while o’ denote the
extensive densities). This matrix has to be positive definite ; if it is semidefinite, we
have superfluous parameters. On the other hand, by measuring the changes of
intensive Y, as answers for the prepared changes of the extensives X* one can
check the validity of the Gibbs-Duhem relation

> X dY,=0. (2.2)

This relation is a consequence of the homogeneous linearity of the entropy as
a function of the extensives; if the right-hand side is found to be empirically
nonzero, then the set of variables is not complete. Therefore one can determine the

sufficient and necessary set by combining these two kinds of measurements,

sustain the equilibrium states of the evolution. In heavy ion collisions the evolution
of the system happens on a time scale 10722 5 thug only the initial and fina] states
can be compared. Similarly, in cosmology we cannot 8o back to the past to perform
observations. Then it is not possible to induce small arbitrary changes of the
parameters in the intermediate steps of evolution, The system will follow its own
dynamic laws, the energy, momentum and particle balance equations completely
determine the development of consecutive states. Even then, it is possible that the
dynamical quantities of the system, such as,e.g., its energy-momentum tensor, may
be measurable (or deducible from the final detected ‘state), since they are not
derivatives but state functions. Nevertheless, then the total entropy matrix obvious-
ly cannot be measured.

NI THE EQUATIONS

As a consequence of the Einstein equations of Genera] Relativity [29] the
energy-momentum tensor T of the matter fulfils conservation laws -
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Th=0 (3.1)
T* can be decomposed with Iespect to any timelike unit vector field u' as
H..»H@:.‘z»+n~.‘=»+:$»+hs 3.2)
qui=p*y, =0 .

q'=0

lification.
Eq. (3.1) can be decomposed too as

(o+p)uiur +p.(g" + u'u)=0
o.u"+(o+p)us,=0.

The first group fully determines the time evolution of u’, thus the second is not an

Now, if the independent variables are n, and s, then g is the proper potential
density, there are evolution equations for ;' and s, but the conservation laws (3.1)
do not give anything for n,. The system of evolution equations has to be completed
by evolution equations for n, of the form

reactions occur in complete chemica] equilibrium [11], [30].
Using n, and s, a combination of eqs. (3.4) and (3.5) yields

el +sul)= -3 o w, (0 + 2 0ana — 0 - pyur, (3.6)
A A
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where the subscripts of ¢ denote derivation. The left-hand side has to be positive
semidefinite for normal systems of positive temperature [35], and in near equilib-
rium approximation Wi, 0 and p are independent of u’,- hence

and s =s(p, n,) as a potential. Then a Ccombination of €gs. (3.4, 3.5) leads to the
entropy production

S+ sul =5,y + Tl@@l?ﬁlM Sala)ul, (3.8)
A
whence
sa¥, =0
M 4 (3.9)
p= l©+lAmlM :?fv .
So A

Of course, the function s(0, n4) is not in as direct a connection with the particle
interactions as the inverse function o(s, ny). Nevertheless, they can be calculated
from each other.

Wherefrom we introduce a convenient shorthand notation
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N;..»H@tmz» +p(g* + :..z»v . AA.C

Since the components of the €nergy-momentum tensor can pe directly measured,
the energy density o, the pressure p and the velocity u’ possess a direct physical
meaning and thejr values are uniquely fixed. Hence one gets the equations of
motion for u’ (the first of €q. (4.4), not repeated here), and an evolution equation
for the energy density o regarded here as the thermal variable :

0+(e+pu,=0. : _ (4.2)

Now, assume (from some m:mo::mmo:v that N particle degrees are necessary for
a satisfactory description. Then there exist an entropy density function s

h“hAQu =>v

fia + naul, = Wa(o, na) (4.4)

are assumed. The pressure can be expressed as

H N
P==0+=(s- 3 swite) (4.5)
.me R=1
_ Os
Sa " dn,

Then, for the entropy production, one gets
N
SHsul,=> Wesn . (4.6)
R=1

Thus, there exists a compatibility condition between a0, ny) and s(o, na),
according to the Second Law

N
M nm\whz WD AA\NV

R=1
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for any set of variables 0, na. This reflects the fact that both ¥, and s represent
something about the interactions of the (hypothetic) particles.

Now, assume that the chosen model has given a satisfactory description of the
physical situation, but, from some reason, one wants to introduce one more
component, which is a combination of the original ones

ne=(0, na). (4.8)

remain the same, and the first N particle components are the same by construction.
Then

r=r(0,fix,n); g=p; Aa=ns; n,=p

(4.39)
A=1,...,n
M +~m>tm-” G\—A@. m>w =nv” Gﬁ@. =>v AA.A\V
fetnul, =Y, =g+ Qu’,
H N
P==0+—(r=3 rfin—rn); p=p (4.5")
rs R=1 . )
N -
Ftrul,=7 Wers + Yon 20, (4.6)

R

it

i

Now, it is fiecessary to formally introduce a new function of the old variables
MAQ. a, ev” ﬂA@iu sm}. :nv 5 An«.@v
Then the in variance of the pressure yields an equation between s and r:
N N
hnﬂml To@ + M Ameﬁz - mxvzxlemn - meﬁv@, - zMu wx:xv =) AA.HOV
R=1 =
The entropy production equation can be rewritten as
N N
wdc@ + M WZJH + W:M.‘” M Gﬁﬁ\lb - |€€!v+
R=1

R=1

N (4.11)
+ meﬁﬁcm.v + M @rlig +€:Pv =0.

Re=1

Substituting ¢ and 74 from the evolution equations (4.2) and (4.4), and separating
the terms with and without u:,, onegets an equation
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N N
(o +p)i, +xM~ Frfig — = T@ +P)Pe+ Y Prng — e? (4.12)
= R=1
and an inequality
N N
.me Weks + Fo T@ +p)o, + M NrQr — AL ul, =0 (4.13)
= R=1

But, again, the first term does not contain the velocity divergence, and the sign of
u’, is indefinite, so the inequality can hold only if

N
(o+p)e, +=M Ne@r — @ =0 (4.14)
N
> Warg =0 (4.15)
R=1

Finally, ¥, in the second of egs. (4.4) should depend only on the thermodynamica]
variables, but not on u’. Substituting the dot derivatives from the evolution
equations, this condition leads again to €q. (4.14), and there remains

F=sw(na/s, @/s)

(4.17)
@ =sx(na/s) .
Substituting this into eq. (3.15), the inequality gets the form
N N H
zM. Y. T&z + SxrW,+ wy — M (writr)se MM =0
= T=
' (4.18)
(=l =2
* s Y=

We will not discuss this inequality here; it can trivially hold if all the old
components are conserved, otherwise it is a constraint for the functions x{x4) and
w(xx, y), whose form explicitly depends on the forms of the source terms, not
specified here.

Observe that we have not required that the value of the new entropy, or that of
the entropy production, be equal with the old one. If the entropy could be directly
measured, it should be required too, leading to

N
ﬁﬂn” M EZQNS\%”O. A&M@V

R=1
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is nonexistent. Furthermore, there are familiar situations when s 1s not fully
defined, e.g. Callen’s postulate system leaves a freedom in it [35]

N
S'=s+Sso+ci0+ D cng . (4.20)
R=1

Then, summarizing the results of this Section: for a perfect fluid system well
described by means of N particle components, a new and redundant particle
component can be introduced without influencing the observables if the density of
the extra component n. is chosen as

ne=g (4.21)

with a new entropy r = 7. The functions @ and F are given by eq. (4.17), and r has
to satisfy the constraint, (4.18) too. Since the new particles are redundant, this
component is not necessary, its use is quite optional. On the other hand, if the
density of the new component differs from the choice in €q. (4.21), then the two
model systems possessing N and N + 1 components, respectively, do dynamically
differ, their predictions cannot be identical, and then the proper model has to be

Now we are going to demonstrate the consequence of this general abstract
statement on special but important cases.

V. PERFECT FLUIDS WITH ONE CONSERVED
COMPONENT

Consider a perfect fluid with a single (independent) particle component:
s=sle.m) (5.1)
= l@+.~|?l:9.v :

.m.ﬂ



Then the Inequality (4.18) automatically holds. For ne and r one obtains

«=s(0, n)x(n/s)
r=s(p, n)w(n/s, x).

The functions X and w are now completely arbitrary, but this does not mean too
much. Namely, because of =0, both and n are conserved densities, so n/s is
conserved along world lines, thus n./s and r/s are constant along world lines too,
independently of the functional forms chosen in eq. (5.3). Nevertheless, the
introduction of the new component is not a fully trivia] process; the ratio n,/s and
r/s can differ between different world lines.

Now, consider a two component system manufactured in this way from a one

component one, Perhaps the most characteristic feature js that the ratio of the two

(5.3)

consists of nucleons only, in principle it could be described only by means of
nucleons, and it is usual to use a chemical equilibrium conditjon

so there are only two independent thermodynamica] parameters anyway. Let us
briefly discuss this question.

Consider a two component system, and use the intensives T, p; and p, as
independent parameters; then p is the Proper potential, and

n,=p, (5.6)

Assume that n+2n, is conserved, and that there is a chemical equilibrium
between the components, then the condition for it is

ENHN%? AM\NV
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simply a multiplying factor in the thermodynamic quantities, and there is
a factorization in T ang #/T dependences (there is only one y in equilibrium).
Now, then both ny/n, and (ni+n,)/s can depend only on #/T, so they are
functionally dependent, and the deuteron degree of freedom is redundant. Eq.
(5.4) cannot hold if the deuteron component has a characteristic dimensional
parameter of its own (e.g. a volume V, cf. Refs. [12—14]). Namely then it is
expected to occur in the specific entropy. The specific entropy being dimensionless,
one expects a formula of the type

s
LA 1%
. o(c, nV)

processes.
In this context the measurements for the final d/p ratio in heavy ion collisions
may be regarded as measurements for the number of the independent particle

redundant, the number of components is 2.

Mutatis mutandis, some of the results of this section can be applied to
component fluid, one component is conserved, one is not. In Ref. [9] it was shown
that an explicit incorporation of A particles with their own characteristic mass leads
to predictions incompatible with observations;; if one wants to use A's during the
calculation, he has to do jt with an effective mass €qual to the centre of mass energy
of the colliding P, & pair. Such a A component is redundant, so the observations




VL PERFECT FLUIDS WITHOUT PARTICLE
COMPONENT

There exist Very special systems in which there is one single independent
extensive density, the energy density o. For brevity’s sake, such systems will be
referred to here as blackbody radiation, although the form of their equation of state
is not necessarily s~ 34 Such systems are generally some equilibrium
charge-symmetric mixtures of particles; there are (or partially, were) two impor-
tant situations when they play some role. The first is multiparticle production in

particle-particle collisiong at high energies. Although then the initial situation is not
charge-symmetric, if sufficient number of pairs is produced, they dominate the

Since even in equilibrium one may need the number of one kind of particles, e.g.
to calculate mean free paths [15], [19] let us apply our formalism to this case.

Now the results are almost trivial. There is 1o particle density variable on the
right-hand side of eqs. (4.17), so the X is to be taken at 0 argument, and is
a constant dimension]ess number :

=sw ANWV =sw(C).
Since w is dimensionless, w(C) is another dimensionless number. But then both
n./s and n_/r are constant numbers.
This result reflects some physical facts. Consider light particles (whose mass is
small compared to the temperature). Then, according to the equipartition of the
energy in an equilibrium system, we have for them
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(there is a factor of order of 1, depending on the Bose or the Fermi character, and
on degeneracy factors) [15]. N is the number of different types of light particles, so
then C~1/N. Nevertheless, eq. (6.1) possesses this direct meaning only for light
particles. For heavy ones equilibrium distributions give an €xponential suppression

a ghost quantity.

Therefore it is possible that there is no real contradiction between the different
predictions. Zw<m~§o~owmq if one accepts the predicted n/s ratios in face values,
then the prediction of Ref. [17] is directly compatible with fecent cosmologic
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observations [41], while the predictions giving n/s in the order of (more or less)
1 are not; then the present Universe would be monopole-dominated. In thege

equilibrium, then this particle component is unnecessary, hence there is no
evidence for its existence in the thermodynamic sense. (Of course, a redundant

particle may be detected on the one hand, and superfluous for the description on

only in heavy ion collisions, when one cannot influence the intermediate steps of
the evolution, i.e. the system is dynamically closed (energy and momentum

balances are valid), the measurements can indicate only the number of dynamically

the thermodynamical formalism, so the number of the particle degrees of freedom
of the system suggested by measurements is again 2,

For the early Universe just after the creation of GUT magnetic monopoles the
situation is less clear. The assumption that the number of independent particle
components is 0 leads to monopole densities compatible with observation, but this
assumption is criticized from particle physical viewpoint. On the other hand,
introducing explicitly the monopole component into the formalism the predictions
of recent calculations are the same as if this component were redundant. So one can
conclude that the determination of the number of particle degrees of freedom in
the very early Universe would need a 5250&%35_.8:% more consequent and
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self-consistent treatment of the monopole creation and of the evolution of the
Universe.
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