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BLEUSTEIN GULYAEV WAVES IN A PIEZOELECTRIC
HALF SPACE WITH A TIME
DEPENDENT PIEZOELECTRIC CONSTANT

M. GA , Calcutta
NGULY"), Ca

The present paper investigates the propagation of Bleustein-Gulyaev waves in a 6 mm
hexagonal piezoelectric half space assuming the piezoelectric constant to be time
dependent as in Voight’s model of viscoelasticity. Expressions for the various surface
wave characteristics have been determined when there exists a shorting plane at a certain
height above the free surface of the medium.

BOJIHBI BIEVICTEVIHA -TYJISEBA B NbE30JIEKTPHYECKOM IOJIYIIPOCTPAHCTBE
C ObE303JEKTPHYECKON NMOCTOSHHON, 3SABUCSIIEN OT BPEMEHU

B pabote uccnenoBaHo pacnpoctpaHeHne BoiH Bneficredita-I'ynsiea 8 6-MunnnmeTt-
POBOM I'eKCarOHAJNBHOM Ibe303/IEKTPHYECKOM MONYIPOCTPAHCTBE B NMPERNONOXEHHH,
49TO NbE303NEKTPHUECKAS NOCTONHHAS 3aBHCHT OT BPEMEHH aHaNOTHYHO Mofienn Poiirra
1N yAPYTOBA3KHX CBOHCTB cpeibl. BhIPaskeHUst JUIS pPasiHYHbIX XapaKTEPUCTHK MIOCKHX
BONH OBINH ONpeneneHs! Nfisl cly4as, KOTAA Ha ONMpPEleNeHHOR BhICOTE Haj cBOGOMHOM
NOBEPXHOCTBIO CPeflbl CYLIECTBYET MNOCKOCTh 3aMbIKaHUs.

L. INTRODUCTION

The existence of transverse surface waves in piezoelectric crystals of 6 mm
hexagonal symmetry with no counterpart in purely elastic homogeneous material
was first established independently by Bleustein and Gulyaev in two of their
papers, [1] and 2], respectively. After the discovery of Bleustein and Gulyaev
several other researches have worked on these waves (Ludvik and Quate [3],
Cambon [4], Fischler [5], Pajewski [6], etc., to name only a few).

The object of the present-paper is to extend the works of the above named
researchers to a new situation where the piezoelectric constant is assumed to
depend on time ¢ as in Voight’s model of viscoelasticity. The expressions for the
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displacement components, group velocity, maximum penetration depth, power
flow components, the deviation of group velocity from the direction of phase
velocity, amplification or attenuation coefficient, effective surface permittivity,
etc., have been determined considering the existence of a shorting plane at a certain
height above the free surface of the medium.

IIl. PROBLEM AND FUNDAMENTAL EQUATIONS

The fundamental equations of the problem are the equations of mechanical
motion and the equations of state of the piezoelectric material.
The vibration equation and Gauss’s divergence equations are given by

@i, =Ty, 1)
and
U... =0. ANV

The constitutive equations of the piezoelectric half space on which the surface
waves are assumed to propagate are

H... = @.t%t = N:&mi AmV
and
D;=euSu+ € i

(see Tiersten [7]). .

Where Tj; are the stress components, S are the strain components, D; are the
electric displacement components, E; are the electric field components and u; the
displacement components. cu, €.;, €; and @ are the elastic stiffness constants,
piezoelectric constants, dielectric constants and density of the material. Here the
summation convention for repeated tensor indices is employed and an index
preceded by a comma denotes differentiation with respect to some space coor-
dinates. Dot notation signifies time derivative. In addition to the equation
presented above the following two are also important for the problem.

The strain component

1
Sis =3 (U 14w 0) 4

and if @ be the potential function then the electric field components are given by
E =~ Q.i. AMV

The elastic stiffness constant ¢;y and the piezoelectric constants éni; appearing in
the constitutive equations (5) are with four and three indices, respectively. These
constants can be expressed in two index notations (see, Mason [8]). After reducing
all the constants to double index notations and making use of the matrices for
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elastic stiffness, piezoelectric and dielectric constants for piezocrystals with 6 mm
hexagonal symmetry, (see, Tiersten [7]) we find the equation (3) in the following
form

Tu=cuun+ U+ Us s+ en@s

T =ciu,+ ez 2+ Ci3liz 3+ e3,Qs

Tas = i3ty 1+ Cialtz, 2+ Caslus 3 + €33Q 3

Tos = caa(ts, 2+ s 3) + 152

Ta1 = caalus 1+ Ui 3) + €159, (6)

2= nmmA:r 2+ Uy, _v
Dh=eisus  + ersty,3— €1@a
Dy =eis(uz 3+ us.2) — €n@.

Ds=e3u; 1+ esiuz 2+ 33Uz 3 — €33Q3.

Since we limit ourselves to a discussion of the propagation of transverse Bleustein
Gulyaev waves, the displacement components u; and u; can be taken to be zero
and the remaining unknowns u; and ¢ are independent of the x, coordinate. The

Tu=Tn=Ts=T:;=0
23 = Caalz 2+ €15Q
Ts1 = Caslts 1 +€15Q, o)
Dy =eisus i — €1@Q.
Dy=eisus. 2 — €1,
D;=0.

In the present problem the piezoelectric constant e;s is assumed to be time
dependent similar to Voight’s viscoelastic model. So we can write

3
NG"QM—%.TNMWVM.M .

Now using equations (6) and (7) and remembering the assumption Bo:.mosna
above we find from the vibration equation (1) and Gauss’s divergence equation (2)
the following two fundamental equations of the problem:
@ils = caaVus + e§9V@ + Vg 8)
Nm%ANntu.+.mmwANN=unl m__ANNQvHHAw. A@v
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Where V* is the Laplacian operator

a? 3?2
R -
v Tax? + axi”

Introducing the potential function

1 s
Y=0—— [ePu; + eRus]

€
the above two equations further reduce to the following
)2 M, [¢33V2
e&nTthm; Tuzilf?wma <§+Qm; V2ii, (10)
11 1 11
and
Vg =0. (11)

II. BOUNDARY CONDITIONS OF THE PROBLEM

Since the disturbance is propagating over a hexagonal piezoelectric half space
x: 20 there must be some prescribed conditions to be satisfied on the surface
U = 0.

In the present problem we consider the propagating surface to be stress-free and
we also assume the existence of a massless electrical shorting plane at a distance #
above the surface. The region between the piezoelectric substrate and the shorting
plane being vacuum. Here we have to consider the equation of the electric field in
vacuum between the half space and the shorting plane.

(i) If E; is the electric field in vacuum then E..:=0and hence using the potential
E.=— ¢, we find

V¢ =0. 12)
Where ¢ is the electric potential in vacuum.

Since we assume the existence of a shorting plane at a distance 4 above the free

surface of the piezoelectric half-space

@la=-n=0. @1z
(ii) The boundary condition at the free surface can be taken as stress component
N;Nun.hc at :u“O. AHWV

(iii) The tangential components of the electric potential are continuous at the
free surface u, =0. Hence

Qu=@; at wu,=0 (14)
where @ and @ are electric potentials in the substrate and in the vacuum.
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(iv) Normal components of the electric displacement are continuous at the free
surface u, =0. Hence

UN”N)UN at :N”O AHMV
where D; and D, are the normal components of electric displacement in the

substrate and vacuum.

IV. SOLUTION OF THE PROBLEM

Let us assume the solution of the problem (10) and (11) in the following form
y= A, exp (~ yauz) exp {i(yiu; — wt)} (16)
Y =A; exp (—~ yit2) exp {i(y1u; — wt)}.

This assumption satisfies equation (11) identically and the other equation (10)
requires

Cv ~ . A:ANv ANV N
*ﬁﬁtj_vﬁw QIN—EN;N; A& Mﬁv\w|v\mv+eeuno. AH.NV
€11 €n €11

Introducing the decay parameter o defined by a=y,/y, the above equation
becomes
(ef9)’ 2iwelel (eR)w

€n €11 €11

2
AO&+ WAQNI:+©&HO 18)
where v, = w/y, is the phase velocity of the surface wave. These decay constant a
and velocity v, are to satisfy the boundary conditions of the problem also.
Let us now assume the electric field outside the piezoelectric substrate in the
following form

@ =A;sin h {y(x2+ h)} exp {i(yix; — 1)}, (19)

which satisfies the necessary boundary condition @],,-_,=0 and V2@ =0. Now
substituting the expressions for the displacement component u; and y given by
equations (16) in the boundary conditions (13), (14) and (15) and remembering
the relation

V=02 (eBus+ oY)
11

we find the mo:oiim three equations

_u EN ~ :N
Auys |2 (B0 (DN e e i) =0
€n €11 €1
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.. Ammu e iw)+ A, — A, sinh (nh)=0 (20)
Az€n+ As€e?; cosh (yih) =0.

For a non-trivial solution of the above system of equations we find

M,
efReRiw Ammva _ Cu€n+ e$Y)?
Y2 ~y‘ o o 44 :m:ﬁ i vglv\_mmmwlm@ iw) 0
H .
mﬂmelaw:& 1 ~sinh (y,h)| =0 (21)

0 e cosh (y,h)

where €9 is the vacuum permittivity. Expanding the above determinantal equation
we get

ae [eff — R i)

[+ 55 b () Fewere+ (e~ 2icette? — ey

. (@2

Eliminating « between equations (18) and (22) we find

(e —e@iw)*
0. tana (y, .‘_

€

_ ?@%sa [ Fr L (B 2ivePe® ?@%e@ _ E@
€11 €11 €n I
The solution of the problem thus reduces to the following
Us = Aq exp (— ayiuz) exp [i(y,us — wr)] 29

s +M_u Emzu +ei¥1s) = A; exp (— yiu5) exp [i(yruy — w)] +

m: T? exp (— ayiuz) exp {i(y1t — wt)}] +

MMM; Ar exp (— ayiu) exp {i(yiu; — )} iw).

Introducing an amplitude ratio Az/A1=p the expressions for the displacement
component and piezoelectric potential can be written as follows

Us = A exp (— ayite) exp [i(ysus — wr)] (25)
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1
mn_m

Qp=A, Tw exp (—yiu2) +m|h exp (— ayius) —
ef? . .
— . S {(— ayiu) E; exp [i(y1ur — wi)].
11

The amplitude ratio g can be found from the boundary condition (13) and is found
to be the following

h”

o ﬁ eRe?iw+ (@) w® — (cuen + (e J . (26)

m:ﬁmmwlm_wv —ev

V.GROUP VELOCITY OF THE SURFACE WAVE

Replacing V, by w/y; in the equation (23) we get the following equation for w.
@* _HANA_WJA ﬁm:A&Sv ~H_ ﬁfamwﬁmsv sy N_hm: el H~
v: v:
TANE B) + 2[cusen +(eld)] ()" +

+um=®§~ umh_?w ~ diweeR[cue: +
yi !

(27)

(e — e? iw)*

T +E8 anh Q}L

+ Ammwa +{csen + (e =
eh

Differentiating (27) with respect to y, we get the following expression for the group
velocity V,(=dw/dy,)

QS\QV\ — awﬁm:ﬁmmwvn A_ﬁmmmm %m:sul
_ yi yi
€1
NA h? (vih }v W _ 4
W Amhm:ox+wbm:?3 vl 9, ¢ (yih)h) (eff — e iw) .
yi yi ﬁu+m: tanh c:sw
€
(2))2
[40° [+ um_%sT?%:%?@T 28)
1
i | en(efR)’
ETNE {42 + 2cwen + ()7 () + mm:or% (el
v:
~ diefReRcuer + (ef)) + e el i)
T+m_._8== ?i
eh
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Deviding both numerator and denominator of equation (28) by y: we get

i [¢))
V,= N<uﬁm:AmA_~%v~+A~Num:®._mm_%
: Vi

=
Ne\nvm:?tm: ) 2 Amm” sech? C:S}v (ef?— e iw)*

yi AH +58 tanh C:Sv
el

u M
~

1] 4V {(eR)'yi + pen(e?)?)

(29)

+2ipeei¥ef

NAN%NMWVVN + N.{wﬁmmw% Ahﬁm:

4ie mmv

+ A&mwvwv + ﬁm:ﬁt + ﬁm:AQQV Nv e — Aﬁtm: + ﬁ&ﬁvvwv +
4ie@(efd — e? iw)?

T +m:8=r C:Sv
€h

+

VI. MAXIMUM PENETRATION DEPTH OF THE
SURFACE WAVE

An important parameter of the surface wave is the penetration depth into the
medium. This depth is usually derived in multiples of wave length A.

The expressions for amplitude of the disturbance u; and potential ¢ given by
equations (25) are the following

U= A, exp (—ayiu,) (30)
e

. N
.? Tg mx_uA S=Nv+m| mxﬁAoc::uv Iml QGAIS:SV WEM .G:
11 11

The above two equations can be written in the following form

a:/Ar=exp (— ayiAn) = L(n) (say) (32)
Mﬁ_n p exp (— yin) +% exp (—ayidn)—  (say)
- (33)
€1

—2. &xp (— ayidn) iw = M(n)
11

where 1= u,/A.
The value of 1 for which &/ A:(= L(n)) or /A (= M(#n)) is minimum gives the

375



maximum penetration depth of the wave. Now since L(n) =0 does not give us any
positive information about the penetration depth we consider the equation (33).
Using the necessary condition of minimization we find
efy ef? .
exp (—ayiAn) | —p exp (— yiAn(1 — a))yir . ayiA +M| wayA|=0.
11 11

Now exp (— ay:An) =0— n—> « and thus no new information about the penetra-
tion depth of the surface wave is obtained

l H Qmmmw:clmmw
Ty - los _M €up H ’ (34)

Hence the expression for the maximum penetration depth of the surface wave can
be written in the following form using equations (34) and (26)

1 (e —eR iw)’
“V(a—1) °8 r?m_ (D) —2iwe Ve — @@NL - (39

uz=2n

VIL. PIEZOELECTRIC POYINTING VECTOR AND POWER
FLOW COMPONENTS

Using Auld’s [8] notation the expression for the piezoelectric Poyinting vector P
is given by

*
|4 .‘H+mxI

P== 2

(36)

where E is the electric field, H the magnetic field, V the particle velocity and T the
stress tensor. * denotes the complex conjugate of the corresponding quantity. The
first and second term on the right-hand side of (36) represent the average acoustie
and electromagnetic power flow, respectively.

Neglecting the electromagnetic part (E X H)/2 of the Poyinting vector we get

V. T

Py

(37

Here the power flow of the surface wave under consideration is given by the vector
Pr with components

w s m:u_.n
.Hl ‘. um
P..Nwom_ ; AH mavai Av
(see Auld [8]). .
The magnitude of the above vector gives the time average power crossing a strip
of unit width and infinite depth oriented perpendicular to the vector. In the above
equation (38) substituting the expression for the stress components T; and the time
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derivative of the complex conjugate of the displacement component u; from

equation(25) we find on integration the components of the power flow in the
following form

1 (ef¥)? (e Pel®
t = > 2 *HIAI — 1 2 1 Wll s
1= |Ai]’w Tal T e T - Tra 39)
Def? | Pef?
P, = — 2 2 |€iseq Gw
T.2 _>__ @ # en +~+Q AAOV
Pr;=0. (41)

VIII. DEVIATION OF THE GROUP VELOCITY
FROM THE DIRECTION OF THE PHASE VELOCITY

Another important parameter of the surface wave is the deviation Ay of the
group velocity from the direction of the phase velocity, which in practical use
means the deviation of the energy flow from the geometrical axis of an interdigital
transducer. Now

Ay =arc tg Pr.a
1

Py

(42)
where Py and Pz ; are the power flow components as already mentioned.
Using equations (39) and (40) we get from (42)
Ay =0, (43)

which indicates that in the present situation the two directions coincide.

IX. AMPLIFICATION OR ATTENUATION COEFFICIENT OF
THE SURFACE WAVE

Amplification of the surface wave is an important problem of acoustics.
To determine the amplification or attenuation coefficient of the surface wave we
substitute

n=yt+iyt* (44)

in equation (17) and then separating the imaginary part we get the amplification/or
attenuation coefficient in the following form

1

%4*H$AI>+<>N+~%V (45)
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where

A'=y3 :A? + A&SNV - ?@%Sd A0 (e?)’ (e NM

€11 €11 €11

A+ Po* {(cut ?m%v _ Q@Ned

€n €11
A= (46)
(N2 @2, 2 (ON27 (D3
[ ]
2weiYe
€11
B=
NG ARG COR “7)
Cus (ST €n + €}
11

X. EFFECTIVE SURFACE PERMITTIVITY

In this section it will be shown that for waves propagating along the traction free
surface of a piezoelectric material there exists a unique relationship between the
voltage and charge density that appears at the surface. This relationship is
characterized by a quantity called effective permittivity €., which is of great
importance in problems of generation and detection of surface waves. Now,

Eeyp = Ecppyy + Euppy, (48)
where
bN.tnﬂo.v
oy = 49
P il @liaor “9)
bn?nhol
€am™=—T 77— 50
2 ]yl @luamon (50)
= permittivity of free surface (51)
= Mm—.
Evaluating the above expression for €.y, we get
€n
mﬂ 45 == .
) g ANMWV _ @mu% -SVN . AMNV

+— .
a[2ef¥el? iw +(eR) 0w — (cuen + (eB))]

Hence from (52) and (5 C. we have from (48)

a(en+€h) [2ePe® iw + (e — (coer + ()] + ehi(ely — e mEvuﬂmuv

Eeff =

a2efPefd iw + (e@)’w® — (cuen +(e§9)?)] + (eH — e iw)
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X1. DISCUSSION

To summarize the above analysis we recall that the dispersion equation (18)
relates the phase velocity V., wave number y, and decay parameter a. The decay
constant a, wave number y, and phase velocity V; also satisfy the equation (22)
derived from the boundary conditions. To determine a set of values of V., aand y,,
which satisfy both the equations (18) and (22), one should resort to the technique
adopted by White and Tseng [9]. The method consists in assigning a value for the
phase velocity V; and then, solving the two equations (18) and (22), the decay
constant a and the wave number y, can be determined. Thus for a particular choice
of the phase velocity V, it is possible to determine particular values for a and y,.
These values are then substituted in equation (23) to see whether the equation is
identically satisfied. If not, a new value is assigned to the phase velocity V, and the
same steps are repeated over and over again until we find a set of values for V,, a
and y; for which the three equations (18), (22) and (23) are satisfied.

With the help of these values of V,, a and y, we can determine w(= V.,y,) and
y2(=ay,) and hence can find the exact values of the displacement component,
group velocity, maximum panetration depth of the surface wave, power flow
components amplification/or attenuation coefficient, effective surface permittivity
from equations (25), (29), (35), (39), (45) and (53), respectively.

Since tanh (y;h)—0 or 1 as h—0 or — =, the two extreme cases when the haif
space is electrically shorted or open to vacuum correspond to the situations for
h—0 and h— - o, respectively. Substituting these values for tanh (y:h) and
putting the time dependent part of the piezoelectric constant e® equal to zero, the
characteristic equation and the determinantal equation obtained from the bound-
ary conditions are very much simplified and are found to agree with the corres-
ponding results obtained by Bleustein [1].

I am grateful to Dr. A. K. Pal, Department of Mathematics, Jadavpur
University, for his helpful suggestions in the preparation of this paper.
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